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We present results for the equation of state in (2+1)-flavor QCD using the highly improved
staggered quark action and lattices with temporal extent N⌧ = 6, 8, 10, and 12. We show that these
data can be reliably extrapolated to the continuum limit and obtain a number of thermodynamic
quantities and the speed of sound in the temperature range (130–400) MeV. We compare our results
with previous calculations, and provide an analytic parameterization of the pressure, from which
other thermodynamic quantities can be calculated, for use in phenomenology. We show that the
energy density in the crossover region, 145 MeV  T  163 MeV, defined by the chiral transition,
is ✏c = (0.18�0.5) GeV/fm3, i.e., (1.2�3.1) ✏nuclear. At high temperatures, we compare our results
with resummed and dimensionally reduced perturbation theory calculations. As a byproduct of our
analyses, we obtain the values of the scale parameters r0 from the static quark potential and w0

from the gradient flow.
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I. INTRODUCTION

At high temperatures, matter governed by strong inter-
actions (strong interaction matter) undergoes a deconfin-
ing transition to a new state, in which the thermodynam-
ics can be described in terms of quark and gluon degrees
of freedom. The equation of state (EoS) of such matter,
just as for many other thermodynamic systems, is of fun-
damental importance for understanding its composition
as well as its static and dynamical properties. Studying
the properties of this matter using Quantum Chromo-

Dynamics (QCD) was made possible by the formulation
of lattice-regularized QCD [1] and the development of
numerical algorithms for its analysis [2]. Lattice calcula-
tions of the QCD EoS were first performed in 1980 [3],
and, driven by the steady growth in computing resources
and the development of new simulation algorithms, there
now exist precise results for the transition temperature
[4, 5], fluctuations of conserved charges [6–8] as well as
the EoS. For recent reviews see for instance Refs. [9–11].

The EoS contains information on the relevant degrees
of freedom in the thermal medium in di↵erent tempera-
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ture regimes and reflects the transition between di↵erent
states of matter. A quantitative description of the QCD
EoS over a wide temperature range is needed to under-
stand the expansion and cooling of matter in the early
universe, as well as of the hot dense nuclear matter cre-
ated in heavy ion collisions.

To study the QCD EoS across a transition between
di↵erent states of matter, at which the internal degrees
of freedom are highly correlated, requires nonperturba-
tive techniques. However, in the case of strong inter-
action matter, the need for nonperturbative methods is
not restricted to the strongly interacting region close to
the QCD transition temperature, but is also needed far
above this deconfining transition where well-known in-
frared problems [12] prohibit a straightforward pertur-
bative analysis of QCD thermodynamics. Also, at low
temperatures, where the hadron resonance gas models
(HRG) for the description of the hadronic equation of
state are quite successful [13], lattice QCD calculations
are important as they provide the benchmark estimates
of thermal properties of in-medium hadrons and the EoS
of hadronic matter. In summary, simulations of lat-
tice QCD provide the best approach over the full phe-
nomenologically interesting temperature range in which
all sources of errors can be quantified and systematically
improved.

The deconfining transition in QCD, with small but
non-zero values of the light quark masses, is a rapid
crossover that coincides with the restoration of chiral
symmetry [4, 5]. In fact, it is the latter that character-
izes the second order phase transition that occurs in the
chiral limit of QCD at finite temperature. At this phase
transition the spontaneously broken chiral symmetry is
restored. The universal scaling properties of this chi-
ral transition are used to determine the pseudo-critical
temperature Tc at which the rapid crossover with the
physical light and strange quark masses takes place [5].
Extensive simulations of lattice QCD at zero net baryon
number density have established that this crossover tran-
sition occurs at Tc ⇠ 155 MeV for the physical spec-
trum of two light and a heavier strange quark [4, 5].
Even though there is no well-defined separation of phases
because of the crossover nature of the transition, it is
well established that many thermodynamic properties
change rapidly in the vicinity of Tc. Along with the
analysis of fluctuations in the chiral condensate that are
used to probe the restoration of chiral symmetry and
to determine Tc, the study of fluctuations in conserved
charges provides clear evidence for deconfinement of light
and strange quark degrees of freedom, i.e., a transition
from hadronic to quark-gluon degrees of freedom around
Tc [14].

In this paper, we present a detailed analysis of the EoS
that captures the crossover transition and the tempera-
ture range that is relevant to the hydrodynamic evolution
of heavy ion collisions at the Relativistic Heavy Ion Col-
lider (RHIC) and the Large Hadron Collider (LHC). We
performed high statistics simulations of lattice QCD on

lattices of size N3

�N⌧ for four values of N⌧ ⌘ (aT )�1 = 6,
8, 10, and 12 and a large spatial size N� = 4N⌧ . We
use these data to show that a controlled extrapolation
to the continuum can be performed in the temperature
range 130 MeV  T  400 MeV. We also show that
the rapid change in the energy density signaling the lib-
eration of quark-gluon degrees of freedom leads to an
estimate of the pseudo-critical temperature that is con-
sistent with that obtained from the analysis of chiral
symmetry restoration. Lastly, we provide an accurate
parametrization of this EoS that can be used for hydro-
dynamic modeling of heavy ion collisions (see Ref. [15]
for a recent review) and other phenomenological studies
of the thermodynamics of strong interaction matter.

Most of the lattice QCD calculations of the thermo-
dynamics of strong interaction matter use the staggered
fermion discretization scheme. The main reason for this
is that staggered fermions preserve an essential remnant
of the continuum SU(2)L ⇥ SU(2)R chiral symmetry of
the light quark sector and are, at the same time, the least
demanding computationally. For an overview of EoS cal-
culations using other fermion discretization schemes see
Refs. [10, 16]. Furthermore, simulations of QCD thermo-
dynamics using staggered fermions have been systemat-
ically improved by eliminating O(a2) cuto↵ e↵ects [17]
and reducing the e↵ects of the so-called taste symmetry
breaking, specific to the staggered fermion formulation,
by using smeared gauge links [18, 19].

A number of improved staggered formulations have
been developed and used to study QCD at finite temper-
ature. In the past, we have simulated the p4 and asqtad
actions [20–24]. These actions eliminate tree-level O(a2)
cuto↵ e↵ects on lattices with moderate size, N⌧ > 8,
but have large taste symmetry violations at low temper-
atures. The Wuppertal-Budapest collaboration has used
the stout-smeared staggered action [25] that very e↵ec-
tively reduces taste symmetry violation e↵ects but still
shows large O(a2) cuto↵ e↵ects at high temperatures.
The first reliable continuum extrapolated results for the
QCD EoS have recently been obtained with this action
[26].

The calculations presented in this paper are carried
out using the highly improved staggered quark (HISQ)
action introduced by the HPQCD collaboration [27]. It
was designed to improve both the taste symmetry and
the quark dispersion relation by including smeared one-
link terms as well as straight three-link terms that com-
pletely eliminate O(a2) discretization errors at tree level.
The HISQ action has turned out to yield the smallest
violations of taste symmetry among the currently used
staggered fermion actions [5, 28, 29]. We have used it ex-
tensively to carry out high precision studies of the chiral
and deconfinement aspects of the QCD transition which
lead to the estimate Tc = 154(9) MeV for the QCD tran-
sition temperature. It has also been used to study the
fluctuations of conserved charges [7, 30–32] and various
spatial and temporal correlation functions [33, 34]. The
study of fluctuations of conserved charges at high temper-
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atures demonstrates, in particular, that the HISQ action
is indeed very e↵ective in reducing cuto↵ e↵ects [32].

In this paper, we show that continuum extrapolated
results for the EoS of (2+1)-flavor QCD obtained with
the HISQ action are in good agreement with those ob-
tained with the stout action [25, 26] 1. There are, how-
ever, systematic di↵erences which may start to become
of relevance in the analysis of the approach to the pertur-
bative limit at high temperatures. We will discuss these
features in more detail in Secs. IV and V.

The rest of the paper is organized as follows. In
Sec. II we discuss the lattice setup and the simulation
parameters. Section III contains the results for the trace
anomaly, which is the basic thermodynamic quantity ob-
tained from lattice calculations, and from which the EoS
is obtained. Section IV discusses the extraction of ther-
modynamic quantities in the continuum limit. This sec-
tion ends with an analytical parameterization of the EoS
that matches the HRG estimates below T = 130 MeV
and the lattice data between 130 and 400 MeV. In Sec.
V, we present results on observables that depend on sec-
ond order derivatives of the pressure with respect to tem-
perature, i.e., the specific heat and the speed of sound.
We discuss their phenomenological importance. Also in
Sec. V, we discuss how our results for the EoS connect
to high temperature perturbative calculations. Finally,
Sec. VI contains our conclusions. Technical details of the
calculations are given in the appendices.

II. LATTICE SETUP

We performed simulations of (2+1)-flavor QCD using
the HISQ action and the tree-level improved gauge ac-
tion. This combination is referred to as the HISQ/tree
action. The (2+1)-flavor simulations are defined by three
bare parameters, the gauge coupling � = 10/g2, the light-
quark mass ml = mu = md, and the heavier strange
quark mass ms. For a given value of the gauge coupling,
we tune the strange quark mass to its physical value by
matching the mass of the fictitious unmixed pseudoscalar
⌘ss̄ meson to 695 MeV. The light quark mass is fixed as
a fraction of the strange quark mass, ml = ms/20. This
is slightly above the physical ratio ml = ms/27.3 and
corresponds to a pion mass of about 160 MeV in the con-
tinuum limit. This di↵erence should, however, give rise
to negligible e↵ects in the calculation of the EoS [24, 25].
Having fixed ms and ml, the continuum limit is taken
along a line of constant physics (LCP) controlled by a

1 There was an error in the preliminary analyses of the EoS with
the HISQ/tree action presented in conference proceedings before
2014 [35–37] due to an incorrect normalization of the fermion
contribution to the trace anomaly. This error gave a larger value
of the trace anomaly for T < 300 MeV. Preliminary results for
the EoS with the HISQ/tree action prior to 2014 are, therefore,
superseded.

single parameter, the gauge coupling �.
The LCP for the HISQ/tree action and ml = ms/20

has been established, and reported in Ref. [5], based on a
set of zero-temperature ensembles that span the range of
gauge couplings � = 5.9�7.28. In that study, the associ-
ated sets of finite temperature ensembles were generated
on lattices with temporal extent N⌧ = 6, 8, and 12, and
a fixed aspect ratio N�/N⌧ = 4 for the spatial extent. In
Appendix A, we list all the zero- and finite-temperature
gauge field ensembles used in this study along with the
final statistics. Here we briefly summarize the additional
simulations carried out, and the improvements made,
compared to those presented in Ref. [5].

(i) Additional zero- and finite-temperature ensembles
were generated at � = 7.373, 7.596, and 7.825.

(ii) A new set of finite temperature lattices with N⌧ =
10 were generated.

(iii) The statistics are substantially increased for all ex-
isting ensembles, in some cases by more than an
order of magnitude compared to Ref. [5].

(iv) The determination of the LCP on finer lattices
is improved by measurements of the static quark
potential and the hadron spectrum on new zero-
temperature ensembles.

The lattice spacing a, corresponding to the coupling �,
was determined by calculating the scales r

0

[38] and r
1

[39], defined in terms of the static potential as

r2
dV

dr

����
r
i

= Ci , i = 0, 1 , (1)

where C
0

= 1.65 and C
1

= 1.0. At each �, these scales
are determined by first extracting the potential V (r) by
fitting the lattice data to

V (r) = C +
B

r
+ �r , (2)

and then calculating its derivative in intervals around
the values of r

1

and r
0

, as described in Ref. [5]. The
details of the determination of r

0

/a and r
1

/a and the ex-
trapolation of the ratio, r

0

/r
1

, to the continuum limit
are given in Appendix B. The extrapolated result is
r
0

/r
1

= 1.5092(39), which gives r
0

= 0.4688(41) fm us-
ing the physical value r

1

= 0.3106(14)(8)(4) fm [40]. This
estimate of r

0

is in agreement with r
0

= 0.48(1)(1) fm
given in Ref. [4].
To crosscheck the precision of the determination of

the lattice spacing, we also calculated the scale w
0

first proposed in Ref. [41]. The details of this calcu-
lation are also given in Appendix B, and we obtain
w

0

/r
1

= 0.5619(21) in the continuum limit. This trans-
lates to w

0

= 0.1749(14) fm, in agreement with w
0

=
0.1755(18)(4) fm given in Ref. [41].
We have also measured the masses and decay constants

of several light hadrons. These allow us to improve the
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Figure 1: The trace anomaly calculated with the HISQ/tree
action at di↵erent N⌧ and compared with results from previ-
ous calculations with the p4 and asqtad actions on N⌧ = 8
lattices [23], except for the two highest temperatures, where
we show the N⌧ = 6 p4 data from Ref. [42] and Ref. [22],
respectively.

determination of the LCP at weaker coupling and provide
further crosschecks on the scale setting in the continuum
limit. We find that the di↵erent ways to set the lattice
scale using hadronic observables agree with each other
and the scale determined using r

1

within the estimated
errors. The details of these analyzes are presented in
Appendix C.

III. THE TRACE ANOMALY

The QCD partition function on a hypercubic lattice of
size N3

�N⌧ , after integration over the fermion degrees of
freedom, is given by

Z(�, N�, N⌧ ) =

Z Y

x,µ

dUx,µe
�S(U) , (3)

where Ux,µ 2 SU(3) are the gauge field variables, labeled
by x and µ, defined on the links between lattice points
and the Euclidean action S(U) is the sum of the gauge
and fermionic parts:

S(U) = �SG(U)� SF (U) . (4)

The temperature in physical units is set by the temporal
extent N⌧ of the lattice and related to the lattice spacing
a as T = 1/(aN⌧ ).

The trace of the energy-momentum tensor, also called
trace anomaly or the interaction measure, is related to
the pressure p as (see Ref. [22])

⇥µµ(T )

T 4

=
✏� 3p

T 4

= T
d

dT

⇣ p

T 4

⌘
, (5)

with ✏ denoting the energy density. ⇥µµ(T ) can be de-
fined on the lattice as the total derivative of lnZ with

respect to the lattice spacing a:

⇥µµ = ✏� 3p = �T

V

d lnZ

d ln a
. (6)

The right hand side of Eq. (6) is straightforward to eval-
uate on the lattice and gives

✏� 3p

T 4

⌘ ⇥µµ
G (T )

T 4

+
⇥µµ

F (T )

T 4

, (7)

⇥µµ
G (T )

T 4

= R� [hsGi0 � hsGi⌧ ]N4

⌧ , (8)

⇥µµ
F (T )

T 4

= �R�Rm[2ml

�h ̄ il,0 � h ̄ il,⌧
�

+ms

�h ̄ is,0 � h ̄ is,⌧
�
]N4

⌧ . (9)

Here hsGi⌧(0) is the expectation value of the action den-
sity for the gauge fields evaluated at finite (zero) temper-
ature and h ̄ il(s),⌧(0) stands for the expectation values
of light (l) and strange (s) quark chiral condensates eval-
uated at finite (zero) temperature. Subtracting the zero
temperature values in the above expressions ensures that
all thermodynamic quantities are finite in the continuum
limit. In Eq. (9), we have used the single flavor normal-
ization for both the light and strange quark condensates
as in previous works [5, 22, 23]. The nonperturbative
beta function and mass renormalization function are de-
fined as [22, 23]

R�(�) =
r
1

a

✓
d(r

1

/a)

d�

◆�1

, (10)

Rm(�) =
1

ms(�)

dms(�)

d�
. (11)

The determination of these functions is discussed in Ap-
pendices B–D. In the above equations, we explicitly sep-
arated the contributions to the trace anomaly that come
from purely gluonic operators ⇥µµ

G (T ) and fermionic op-
erators ⇥µµ

F (T ). Even though we will refer to them as
the gluonic and fermionic parts, it would be misleading
to consider ⇥µµ

F (T ) as the quark contribution to the trace
anomaly. For example, for massless quarks ⇥µµ

F (T )/T 4

is zero, while massless quarks certainly contribute to the
trace anomaly. At high temperatures, where the e↵ect of
nonzero quark masses is expected to be small, the quark
contribution almost exclusively comes from ⇥µµ

G (T ). As
we will see below, this expectation is confirmed by our nu-
merical data. The above separation of the trace anomaly
into ⇥µµ

G (T ) and ⇥µµ
F (T ) is, however, useful in the anal-

ysis of lattice data as they are expected to be a↵ected
di↵erently by the taste symmetry breaking inherent in
staggered fermions and because the statistical errors are
also di↵erent.
The pressure can be calculated using the integral

method, i.e., by inverting Eq. (5):

p(T )

T 4

=
p
0

T 4

0

+

Z T

T0

dT 0⇥
µµ

T 05 . (12)
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Figure 2: The gluonic (left) and fermionic (right) parts of the trace anomaly for di↵erent N⌧ . See text for details.

The choice of the reference temperature T
0

and pressure
p
0

is discussed in Sec. IV. All other thermodynamic quan-
tities, defined as appropriate derivatives of the partition
function with respect to the temperature, can be calcu-
lated from Eqs. (5) and (12) by using standard thermo-
dynamic identities.

Since the trace anomaly is the central quantity in the
lattice calculations of the EoS, we discuss its properties
in some detail. In Fig. 1, we compare results for the trace
anomaly obtained with the HISQ/tree action on lattices
with temporal extent N⌧ = 6, 8, 10, and 12 with our pre-
vious findings using the p4 and asqtad actions [22, 23, 42].
The cuto↵ e↵ects are much smaller in the HISQ/tree ac-
tion and the height of the peak is significantly reduced.
Below the peak, the HISQ/tree data are larger than the
p4 and asqtad results, but significantly smaller at tem-
peratures around and higher than the peak. These large
deviations reflect the fact that the asqtad and the p4 ac-
tions have much larger cuto↵ e↵ects at low temperatures
and in the crossover region (see discussions in Ref. [5]).
The smaller taste violations of the HISQ action lead to a
smaller root-mean-square mass in the pseudoscalar sec-
tor [5], i.e., to a smaller average pion mass, which leads
to a larger trace anomaly as well as larger pressure and
energy density in the low temperature, hadronic region.
For T > 350 MeV, we find reasonably good agreement
between the results obtained with di↵erent actions. This
is, to some extent, expected as at such high temperatures,
i.e., at small a, all the above actions should have small
cuto↵ e↵ects. This expectation has been demonstrated
in the calculations of quark-number susceptibilities [32].
In Sec. IV, we show that having small cuto↵ e↵ects in the
data with the HISQ/tree action allows us to make robust
continuum extrapolations and obtain a precise EoS in the
temperature range 130–400 MeV.

A closer look at the HISQ/tree action data shown in
Figs. 1, 2, and 3 reveals some cuto↵ e↵ects at low tem-
peratures and in the peak region. It is instructive to
discuss these cuto↵ e↵ects separately in terms of the
gluonic, ⇥µµ

G , and the fermionic, ⇥µµ
F , contributions de-

fined in Eqs. (8) and (9), respectively, and shown in
Fig. 2. We find that the trace anomaly is dominated
by the gluonic part. The fermionic contribution is about
(20�25)% of the gluonic contribution in the peak region,
rises to ⇠ 35% below it, and becomes much smaller at
high temperatures. At T = 400 MeV, it is only about
10%. Around the peak, ⇥µµ

G , and consequently the trace
anomaly, shows a decrease with increasing N⌧ , i.e., the
continuum limit is approached from above.
The statistical errors and the lattice discretization ef-

fects in the HISQ/tree data are smaller in the fermionic
part compared to the gluonic part. In ⇥F /T

4, we observe
significant cuto↵ e↵ects only at the lowest temperature
T ⇠ 133 MeV, where the N⌧ = 6 and 8 data di↵er by
about 30%. This small size of cuto↵ e↵ects in ⇥µµ

F with
the HISQ/tree action in the low temperature region is
in contrast to results obtained using the asqtad and the
p4 actions, where the fermionic part showed significantly
larger cuto↵ e↵ects. We also note that cuto↵ e↵ects aris-
ing from taste symmetry violations have opposite e↵ects
in ⇥µµ

F and ⇥µµ
G . While a larger root-mean-square (RMS)

mass for the pions leads to smaller values of ⇥µµ
G at low

temperatures, it leads to larger values in ⇥µµ
F as the chiral

condensates are larger for larger pion masses.
In the total trace anomaly, significant discretization ef-

fects are observed only in the peak and low-temperature
regions. Within errors, we find no cuto↵ e↵ects on com-
paring N⌧ = 6, 8, and 10, data for T < 145 MeV. In the
interval 145 MeV < T < 170 MeV, we observe some cut-
o↵ dependence, with the largest di↵erence between the
N⌧ = 6 and 8 data.
At low temperatures, all thermodynamic quantities are

expected to be well-described by the hadron resonance
gas (HRG) model, in which all the hadrons and hadron
resonances are assumed to contribute to the thermody-
namics as non-interacting particles. Many previous stud-
ies have confirmed this expectation [6, 7, 31, 43–46]. The
trace anomaly in the HRG model is given by

✓
✏� 3p

T 4

◆HRG

=
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Figure 3: The trace anomaly in the low temperature region
compared with the hadron resonance gas model (solid line).

X

m
i

m
max

di
2⇡2

1X

k=1

(�⌘i)k+1

k

⇣mi

T

⌘
3

K
1

(
kmi

T
) , (13)

where di↵erent particle species of mass mi have degen-
eracy factors di and ⌘i = �1(+1) for bosons (fermions).
The particle masses are taken from the Particle Data
Book [47], including all known states up to the resonance
mass of mmax = 2.5 GeV. We compare the predictions of
the HRG model with our data for the trace anomaly in
the low temperature region in Fig. 3. For T < 145 MeV
the lattice data do not show any significant N⌧ depen-
dence and are in good agreement with estimates from the
HRGmodel. This agreement will be used in an important
way for the continuum extrapolation and for the calcu-
lation of the pressure described in the next section. For
temperatures in the interval 145 MeV < T < 170 MeV,
the N⌧ = 8, 10 and 12 lattice data lie above the HRG
curve, while the N⌧ = 6 data lie systematically below.
In Sec. IV, we show that the cuto↵ e↵ects in the N⌧ = 6
data are large in this temperature interval.

IV. THERMODYNAMICS IN THE
CONTINUUM LIMIT

In this section, we describe the calculation of the pres-
sure and the energy and entropy densities in the con-
tinuum limit. The main step in this calculation is the
extrapolation of the lattice data for the trace anomaly
⇥µµ from N⌧ = 6, 8, 10, and 12 lattices to the contin-
uum limit. Noting that the leading lattice discretization
e↵ects (N⌧ dependence) for staggered fermions are ex-
pected to be proportional to (aT )2 ⇠ 1/N2

⌧ , we use the
fit ansatz

⇥µµ(T )

T 4

= A+
n
k

+3X

i=1

Bi⇥Si(T )+
C +

Pn
k

+3

i=1

Di ⇥ Si(T )

N2

⌧

,

(14)

where nk denotes the number of knots in the interior of
the fit interval and the Si are a set of basis cubic splines
with discontinuities only in the third derivative at the
specified knots as described below.2 The positions of the
knots and the constants A, Bi, C, andDi are parameters
that are determined by the fit. To test whether it is
su�cient to keep just the leading 1/N2

⌧ term, we also
considered the next, O(1/N4

⌧ ), correction,

E +
Pn

k

+3

i=1

Fi ⇥ Si(T )

N4

⌧

. (15)

Adding these terms to the quadratic fit, given in Eq. (14),
defines the quartic fit also discussed below.
The basic assumption underlying the proposed fit

ansatz is that the data and the variation with N⌧ can
be described by a set of piecewise continuous splines of
cubic order. The temperature interval to be fitted is di-
vided into sub-regions by a finite number of internal knots
nk, which we further assume are independent of N⌧ . The
number and position of these knots specify a set of basis
splines that forms a complete set over the full interval,
i.e., any piecewise continuous cubic function can be fitted
by them. The number of knots needed depends, in gen-
eral, on the complexity of the data; and the total number
of basis splines invoked by the fit depends on the number
of knots specified. The positions of the knots are outputs
of the least-square minimization procedure we use.
A number of choices need to be specified before we can

discuss the fits.

(i) The errors in each data point for ⇥µµ(T )/T 4 are as-
sumed to be normally distributed and independent,
since these come from independent simulations.

(ii) The entire analysis is done within a bootstrap pro-
cedure using 20,001 samples. This number was
chosen to make the sampling error in the boot-
strap estimate of the standard error 1%. The boot-
strap samples were generated by selecting each data
point from a normal distribution with its width
given by the quoted error. The final error band
for ⇥µµ(T )/T 4 is given by the 1� spread of the
bootstrap values at each temperature. The statis-
tical package R [48–50] was used to implement this
analysis.

(iii) The values of temperature at which simulations
have been done are not uniform, in particular we
do not have much data on N⌧ = 10 and 12 lat-
tices for T < 130 MeV and T > 400 MeV. Our
results will, therefore, be restricted to the range
130 MeV  T  400 MeV.

2 Note that when knots are coincident, successively lower deriva-
tives are discontinuous. All the splines are defined to go to zero
at the lower end of the fit interval as we explicitly include the
constants A and C in our fit ansatz.
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(iv) Our goal is to use the minimum number of knots,
and thus, the minimum number of parameters. We
studied the �2 resulting from the least-square min-
imization procedure to settle on the number of
knots.

(v) We analyze the data using both the quadratic and
quartic ansatz and with and without the N⌧ = 6
data. Our final results are obtained using the
quadratic fit without the N⌧ = 6 data.

(vi) The data on N⌧ = 8 lattices for T  130 MeV are
insu�cient to constrain the fits at the lower end.
We, therefore, use the estimate ⇥µµ(T )/T 4 = 1.007
with slope 0.032 at T = 130 MeV, obtained from
the HRG model, for the continuum extrapolated
value. To justify this choice we note that the HRG
model is a good approximation at this tempera-
ture and insensitive to possible higher resonances
missed in the hadron spectrum [8]. Indeed, we find
that the lattice data and the HRG estimates agree
for T < 145 MeV. To take into account the un-
certainty in the HRG estimates, both the estimate
and the slope were picked using a Gaussian dis-
tribution about their central values with a conser-
vatively chosen width, 10% of their respective val-
ues.We implemented this constrain by replacing the
spline B

1

by a term proportional to T � 130 MeV
with its coe�cient given by the HRG value. This
constraint, therefore, reduces the number of free
parameters in Eq. (14) by two.

(vii) The data on N⌧ = 8 lattices in the temperature
range (400–610)/ MeV was used to stabilize the
quadratic fits up to 400 MeV. For the quartic fits,
both the N⌧ = 6 and 8 data at T > 400 MeV were
used.

To decide on the number of knots to use, we fit the
N⌧ = 8, 10, and 12 data with the quadratic ansatz with
2–4 internal knots. The fit with two knots was the most
stable and the �2 did not improve significantly with ad-
ditional knots. The choice of two knots is consistent with
the observation that the data show three main regions:
the low temperature region T<⇠175 MeV, the peak re-
gion (175–225 MeV) and the high temperature region
T>⇠225 MeV. The fit parameters and the location of the
knots are outputs of the �2 minimization procedure. This
fit has 53 data points, 5 basis splines and 12 free param-
eters, i.e., the 10 parameters remaining in Eq. (14) after
imposing the HRG value and slope at T = 130 MeV and
the locations of the two knots. This ansatz fits all the
data, and the �2/dof = 0.9 for dof = 41 was well dis-
tributed, i.e., it was not dominated by a few points nor
by any one of the three regions. The distribution of the
positions of the knots over the 20,001 samples had cen-
tral values of 170 MeV and 229 MeV with a standard
deviation of 8 MeV. This fit, called the final fit, is used
for our continuum results as the tests itemized below did
not improve upon it:

(i) Adding more knots to the final fit did not improve
the fit. The additional parameters were poorly de-
termined, and in most bootstrap samples two or
more knots were coincident.

(ii) We added the N⌧ = 6 data to the final fit. The
�2/dof increased and the fit became skewed. It
adjusted to preferentially fit the low error N⌧ = 6
points and the �2 became dominated by the N⌧ =
12 data below the peak. We concluded that the
quadratic ansatz is insu�cient to fit the data at all
four N⌧ values.

(iii) We explored the quartic ansatz to fit the data at
all four N⌧ values. In this case, the best fit re-
quired three knots. The resulting error band over-
laps with that of the the final fit except in the peak
region, where it is about 1� lower. The position of
the knots are not as stable as in the final fit, and
in many bootstrap samples, two knots were coin-
cident. To summarize, the final quadratic fit was
preferred over the quartic fit as it is based on data
closer to the continuum limit, has the least number
of parameters and fits the data well as shown in
Fig. 4.

The quality of the final fit using Eq. (14) is demon-
strated in Fig. 4 where we show that the bootstrap error
bands of the final fit describe the N⌧ = 8, 10, and 12 data
very well. On the other hand, as stated previously, we
find that the N⌧ = 6 data lie outside the range of applica-
bility of the quadratic ansatz. The same error bands are
compared with the final continuum extrapolated result
(black band) in Fig. 5.
Having determined the final fit, we obtained the pres-

sure p/T 4 by numerically integrating the bootstrap sam-
ples for ⇥µµ(T ) between 130 MeV and 400 MeV using
Eq. (12). For the integration constant p

0

, the pressure
at T = 130 MeV, we picked a value from a normal dis-
tribution with the mean value p

0

/T 4

0

= 0.4391, again
taken from the HRG model, and width 0.0439, a con-
servative 10% error estimate on this HRG value. Since
the estimate of p

0

/T 4

0

is independent of the calculation
of ⇥µµ(T ), this choice e↵ectively adds a �p

0

in quadra-
ture to the errors from integrating ⇥µµ(T )/T 4. Knowing
⇥µµ(T )/T 4 ⌘ (✏�3p)/T 4 and p/T 4, it is straightforward
to derive the energy density, ✏, and the entropy density
s = (✏+ p)/T .
The final systematic error that is folded into the esti-

mates of all the thermodynamic quantities is the uncer-
tainty in the determination of the lattice scale a, and thus
the values of the temperature T used in the fits. Based
on the uncertainty analyses in the determination of the
lattice scale a (⇠ 1.3%) and tuning of the ms to stay on
the LCP presented in Appendices B and C, we assigned
an overall conservative 2% uncertainty in T , which we
add linearly to the error estimates already assigned by
the bootstrap process. In practice, at each T and for
each observable, we picked the minimum and maximum
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Figure 4: The data for the trace anomaly and the result
(thick lines showing the 1� bootstrap error bands) of applying
Eq. (14) with N⌧ = 8, 10, and 12. The parameters in Eq. (14)
and their errors, defining this final fit, were determined from
these data as discussed in the text. The error bands shown
are generated by the same bootstrap process used to estimate
the fit parameters and their errors. The additional 2% error
that is added to the final continuum result to account for the
uncertainty in the determination of the temperature scale as
discussed in the text is not included in these plots.

values of the 1� bootstrap envelope in the region T ±2%.
This new envelope is then used as the final uncertainty
band for all the continuum results shown in the figures
and discussed below.

Our continuum extrapolated results for the trace
anomaly and other thermodynamic observables are
shown in Fig. 5 and the data are given in Table I. For
T < 150 MeV, the trace anomaly is well approximated
by the HRG estimate shown by the solid line in Fig. 5
(left). For T > 150 MeV, the N⌧ � 8 lattice results are
systematically higher than the HRG estimate as shown
in Fig. 3, and the slopes of the HRG and continuum ex-
trapolated curves start to di↵er as shown in Fig. 5. In
the peak region, (✏ � 3p)/T 4 has a maximum of about
4.05(15) at T ⇠ 204 MeV. This maximal value from simu-
lations with the HISQ/tree action is significantly smaller
than our previous results with the p4 and asqtad actions
which were incorporated in the HotQCD parametrization
[23] of the EoS, as well as in the s95p parametrization of
the EoS that is frequently used in hydrodynamic models
[45].

The final continuum extrapolated estimates of the
pressure, energy density and entropy density are shown
in Fig. 5 (right) and compared with HRG predictions for

T < 170 MeV. Again, there is reasonable agreement for
T < 150 MeV. Above T = 150 MeV, HRG estimates
lie along the lower edge of the error-band of the lattice
estimates.
We can now compare our results with the results ob-

tained by the Wuppertal-Budapest Collaboration using
the stout action [26]. This comparison is shown in Fig.
6 for the trace anomaly, the pressure and the entropy
density. We find good agreement in the trace anomaly
with the stout results over the full temperature range
(130 � 400) MeV. Note, however, that above the peak
the central values with the stout action lie systemati-
cally below ours. As a result, our estimates of the pres-
sure become systematically larger for T > 200 MeV.
By T = 400 MeV, the di↵erence between the central
values in the two calculations increases to about 6%.
The two results, however, still agree within errors. The
di↵erence in the entropy density reaches about 7% by
T = 400 MeV, and in this case the two estimates di↵er by
about 2�. These di↵erences suggest that more detailed
calculations of the trace anomaly at higher temperatures
are needed. In particular, it would be important to see
if the di↵erences persist at higher temperatures where
a comparison with resummed perturbative calculations
should be possible (see Sec. V.C).

A. Parametrization of the equation of state

We close this section by providing an analytical
parametrization of the pressure of (2+1)-flavor QCD,
summarized in Table I, that can be used in phe-
nomenological applications and hydrodynamic modeling
of strong interaction matter. We choose an ansatz that
incorporates basic features of the low and high temper-
ature limits, i.e., it ensures that the pressure becomes
exponentially small at low temperatures and approaches
the ideal gas limit at high temperatures. We find that the
following parametrization provides an excellent descrip-
tion of all bulk thermodynamic observables discussed in
the previous sections, including the specific heat and
speed of sound that require second derivatives of p/T 4

with respect to the temperature to be discussed in the
next section,

p

T 4

=
1

2
(1 + tanh(ct(t̄� t

0

))) ·
pid + an/t̄+ bn/t̄

2 + cn/t̄
3 + dn/t̄

4

1 + ad/t̄+ bd/t̄2 + cd/t̄3 + dd/t̄4
, (16)

where t̄ = T/Tc and the QCD transition temperature
Tc = 154 MeV is a conveniently chosen normalization.
In this parametrization, pid = 95⇡2/180 is the ideal gas
value of p/T 4 for massless 3-flavor QCD. It is also the
appropriate infinite temperature limiting value for QCD
with light and strange quarks that could be refined to
include additional perturbative corrections. However, at
present we do not see any need for this. We also note that
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Figure 5: Spline fits to the trace anomaly for several values of the lattice spacing aT = 1/N⌧ and the result of our continuum
extrapolation (left). Note that the error bands shown here do not include the 2% scale error. The right hand panel shows
suitably normalized pressure, energy density, and entropy density as a function of the temperature. In this case the 2% scale
error is included in the error bands. The dark lines show the prediction of the HRG model. The horizontal line at 95⇡2/60
in the right panel corresponds to the ideal gas limit for the energy density and the vertical band marks the crossover region,
Tc = (154± 9) MeV.
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Figure 6: The comparison of the HISQ/tree and stout results
for the trace anomaly, the pressure, and the entropy density.

fixing cn = cd = 0 gives an excellent parametrization of
all our numerical data and is in good agreement with the
HRG estimate, at least down to T = 100 MeV. Further-
more, this parametrization agrees with the N⌧ = 8 data
well beyond T = 400 MeV.

The values of the parameters in our ansatz for the pres-
sure, Eq. (16), are summarized in Table II. The results
of this ansatz for the speed of sound, energy density, and
specific heat are compared with our continuum extrapo-
lated error bands in Figs. 7 and 8.

V. SPECIFIC HEAT, THE SPEED OF SOUND
AND DECONFINEMENT

All thermodynamic quantities, for fixed light and
strange quark masses, depend on a single parameter—
the temperature. In Section IV, we derived the basic
thermodynamic observables (✏, p, s) from the contin-
uum extrapolated trace anomaly ⇥µµ(T ). We now dis-
cuss two closely related observables that involve second
order derivatives of the QCD partition function with re-
spect to the temperature, i.e., the specific heat,

CV =
@✏

@T

����
V

⌘
✓
4
✏

T 4

+ T
@(✏/T 4)

@T

����
V

◆
T 3 , (17)

and the speed of sound,

c2s =
@p

@✏
=
@p/@T

@✏/@T
=

s

CV
. (18)

The quantity Td(✏/T 4)/dT can be calculated directly
from the trace anomaly and its derivative with respect
to temperature,

T
d✏/T 4

dT
= 3

⇥µµ

T 4

+ T
d⇥µµ/T 4

dT
. (19)

These identities show that the estimates for the specific
heat and the speed of sound should be of a quality similar
to ✏/T 4 or p/T 4. In Figs. 7 and 8, we show the agree-
ment between the bootstrap error bands for these quan-
tities and the estimates obtained by taking second or-
der derivatives of the analytic parameterization for p/T 4

given in Eq. 16. The latter are shown as dark lines inside
the bootstrap error bands.
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T [MeV] ⇥µµ/T 4 p/T 4 ✏/T 4 s/T 3 CV /T 3 c2s
130 1.01(-10)(+19) 0.439(-44)(+65) 2.33(-16)(+33) 2.77(-20)(+39) 16.5(-0.9)(+3.0) 0.168(-15)(+6)

135 1.21(-21)(+23) 0.481(-67)(+69) 2.65(-35)(+38) 3.13(-41)(+44) 20.4(-3.0)(+3.1) 0.153(-10)(+12)

140 1.46(-24)(+25) 0.529(-72)(+75) 3.05(-41)(+43) 3.58(-47)(+50) 24.5(-3.2)(+3.4) 0.146(-8)(+9)

145 1.76(-27)(+28) 0.586(-78)(+82) 3.52(-46)(+48) 4.11(-52)(+55) 28.6(-3.4)(+3.6) 0.144(-6)(+7)

150 2.09(-29)(+30) 0.651(-85)(+89) 4.05(-50)(+52) 4.70(-58)(+60) 32.6(-3.6)(+3.6) 0.144(-6)(+7)

155 2.43(-31)(+32) 0.726(-93)(+97) 4.61(-54)(+56) 5.34(-62)(+65) 36.2(-3.6)(+3.5) 0.148(-7)(+7)

160 2.76(-32)(+32) 0.808(-100)(+105) 5.19(-57)(+59) 6.00(-66)(+68) 39.3(-3.4)(+3.3) 0.153(-8)(+9)

165 3.07(-32)(+31) 0.898(-108)(+112) 5.76(-59)(+60) 6.66(-69)(+70) 41.8(-3.2)(+3.0) 0.159(-9)(+10)

170 3.34(-31)(+30) 0.994(-115)(+118) 6.32(-60)(+60) 7.32(-70)(+71) 43.8(-2.9)(+2.7) 0.167(-10)(+10)

175 3.56(-29)(+28) 1.094(-121)(+124) 6.85(-60)(+60) 7.94(-71)(+71) 45.2(-2.6)(+2.4) 0.176(-11)(+10)

180 3.74(-27)(+25) 1.197(-126)(+129) 7.33(-59)(+59) 8.53(-71)(+70) 46.2(-2.4)(+2.1) 0.185(-11)(+10)

185 3.88(-25)(+23) 1.302(-130)(+133) 7.78(-58)(+57) 9.08(-71)(+71) 47.0(-2.2)(+1.9) 0.194(-11)(+10)

190 3.97(-22)(+19) 1.406(-134)(+136) 8.19(-57)(+56) 9.60(-69)(+68) 47.5(-1.9)(+1.7) 0.202(-10)(+10)

195 4.03(-19)(+16) 1.510(-137)(+139) 8.56(-56)(+54) 10.07(-68)(+67) 47.9(-1.7)(+1.6) 0.210(-10)(+10)

200 4.05(-16)(+14) 1.613(-140)(+141) 8.89(-54)(+52) 10.50(-67)(+65) 48.1(-1.6)(+1.5) 0.218(-10)(+10)

205 4.05(-14)(+14) 1.713(-142)(+143) 9.19(-52)(+50) 10.90(-65)(+63) 48.4(-1.5)(+1.6) 0.225(-10)(+10)

210 4.03(-15)(+15) 1.810(-143)(+143) 9.46(-50)(+48) 11.27(-64)(+62) 48.6(-1.6)(+1.6) 0.232(-10)(+10)

215 3.99(-16)(+16) 1.904(-144)(+144) 9.70(-48)(+47) 11.61(-62)(+60) 48.8(-1.6)(+1.7) 0.238(-10)(+9)

220 3.94(-17)(+17) 1.995(-144)(+144) 9.93(-47)(+46) 11.92(-61)(+59) 49.1(-1.7)(+1.8) 0.243(-9)(+9)

225 3.88(-18)(+17) 2.083(-145)(+144) 10.13(-46)(+45) 12.21(-59)(+58) 49.4(-1.8)(+1.8) 0.247(-9)(+8)

230 3.82(-18)(+18) 2.168(-145)(+144) 10.32(-45)(+44) 12.49(-59)(+58) 49.8(-1.8)(+1.9) 0.251(-8)(+8)

235 3.76(-19)(+18) 2.249(-144)(+143) 10.50(-45)(+44) 12.75(-59)(+58) 50.3(-1.9)(+1.9) 0.254(-8)(+7)

240 3.69(-19)(+19) 2.328(-144)(+143) 10.68(-44)(+44) 13.00(-58)(+58) 50.7(-1.9)(+1.9) 0.256(-8)(+7)

245 3.63(-20)(+19) 2.403(-144)(+143) 10.84(-44)(+44) 13.24(-58)(+57) 51.1(-1.9)(+1.9) 0.259(-7)(+7)

250 3.57(-20)(+20) 2.476(-143)(+142) 10.99(-44)(+44) 13.47(-57)(+57) 51.5(-1.9)(+1.9) 0.261(-7)(+6)

255 3.50(-21)(+20) 2.546(-143)(+142) 11.14(-44)(+44) 13.68(-57)(+57) 51.9(-1.9)(+1.9) 0.264(-7)(+6)

260 3.44(-21)(+21) 2.613(-143)(+142) 11.28(-44)(+44) 13.89(-58)(+57) 52.2(-1.9)(+1.9) 0.266(-7)(+6)

265 3.38(-21)(+21) 2.678(-142)(+141) 11.41(-44)(+44) 14.09(-58)(+57) 52.5(-1.9)(+1.8) 0.268(-6)(+6)

270 3.32(-21)(+21) 2.741(-142)(+141) 11.54(-44)(+44) 14.28(-57)(+57) 52.8(-1.8)(+1.8) 0.270(-6)(+6)

275 3.26(-21)(+21) 2.801(-141)(+141) 11.66(-44)(+44) 14.46(-57)(+57) 53.1(-1.8)(+1.8) 0.272(-6)(+5)

280 3.20(-21)(+21) 2.859(-141)(+140) 11.77(-44)(+43) 14.63(-57)(+57) 53.3(-1.8)(+1.7) 0.274(-6)(+5)

285 3.14(-21)(+21) 2.915(-141)(+140) 11.88(-43)(+43) 14.80(-57)(+57) 53.6(-1.8)(+1.7) 0.276(-5)(+5)

290 3.08(-21)(+21) 2.969(-140)(+140) 11.99(-43)(+43) 14.95(-57)(+56) 53.8(-1.7)(+1.7) 0.278(-5)(+5)

295 3.02(-20)(+21) 3.021(-140)(+140) 12.08(-43)(+43) 15.11(-56)(+56) 54.0(-1.7)(+1.7) 0.280(-5)(+5)

300 2.96(-20)(+21) 3.072(-140)(+139) 12.18(-43)(+43) 15.25(-56)(+56) 54.2(-1.7)(+1.7) 0.282(-5)(+6)

Table I: Continuum extrapolated results for the trace anomaly ⇥µµ, pressure p, energy density ✏, entropy density s, specific
heat CV , and the square of the speed of sound c2s in appropriate units of the temperature T . The asymmetry in the errors,
given in the two brackets, arises from the 2% systematic error in asigned to the temperature scale.

A. Speed of sound, the softest point of the EoS
and the critical energy density

In Fig. 7 (top), we show the speed of sound as a func-
tion of the temperature and compare our results with
those obtained by using the stout action [26]. We find
that the HISQ/tree and the stout results agree within
the estimated errors. The softest point of the EoS [51] at
T ' (145� 150) MeV, i.e., at the minimum of the speed
of sound, lies on the low temperature side of the crossover
region. At this point, the speed of sound is only slightly
below the corresponding HRG value. This follows from

the good agreement between HRG estimates and our lat-
tice QCD results for the energy density and the pressure.
Furthermore, the value c2s ' 0.15 is roughly half way be-
tween zero, the value expected at a second order phase
transition with diverging specific heat3, and the value for
an ideal massless gas, c2s = 1/3. At the high temperature
end, T ⇠ 350 MeV, it reaches within 10% of the ideal gas

3 In the case of QCD the specific heat and therefore also the speed
of sound stays finite even at a second order phase transition in
the chiral limit.
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T [MeV] ⇥µµ/T 4 p/T 4 ✏/T 4 s/T 3 CV /T 3 c2s
305 2.91(-20)(+21) 3.120(-139)(+139) 12.27(-43)(+42) 15.39(-56)(+55) 54.3(-1.7)(+1.7) 0.283(-5)(+6)

310 2.85(-20)(+20) 3.167(-139)(+139) 12.35(-42)(+42) 15.52(-56)(+55) 54.5(-1.7)(+1.7) 0.285(-6)(+6)

315 2.79(-19)(+20) 3.212(-139)(+138) 12.43(-42)(+42) 15.64(-56)(+55) 54.6(-1.7)(+1.7) 0.286(-6)(+6)

320 2.74(-19)(+20) 3.256(-139)(+138) 12.51(-42)(+41) 15.76(-55)(+55) 54.8(-1.7)(+1.7) 0.288(-6)(+6)

325 2.69(-19)(+20) 3.298(-138)(+138) 12.58(-42)(+41) 15.88(-55)(+54) 54.9(-1.7)(+1.7) 0.289(-6)(+7)

330 2.63(-19)(+19) 3.338(-138)(+137) 12.65(-41)(+41) 15.99(-54)(+54) 55.0(-1.7)(+1.7) 0.291(-6)(+7)

335 2.58(-19)(+19) 3.377(-138)(+137) 12.71(-41)(+41) 16.09(-54)(+54) 55.1(-1.7)(+1.8) 0.292(-6)(+7)

340 2.53(-19)(+19) 3.415(-137)(+137) 12.78(-41)(+40) 16.19(-54)(+53) 55.2(-1.7)(+1.8) 0.293(-7)(+7)

345 2.48(-20)(+19) 3.452(-137)(+136) 12.83(-41)(+40) 16.29(-54)(+53) 55.3(-1.7)(+1.8) 0.294(-7)(+7)

350 2.43(-20)(+19) 3.487(-136)(+136) 12.89(-40)(+40) 16.38(-53)(+53) 55.4(-1.8)(+1.9) 0.296(-7)(+7)

355 2.38(-20)(+19) 3.521(-136)(+135) 12.94(-40)(+40) 16.47(-53)(+53) 55.5(-1.8)(+1.9) 0.297(-7)(+7)

360 2.33(-20)(+20) 3.554(-136)(+135) 13.00(-40)(+40) 16.55(-53)(+53) 55.6(-1.8)(+1.9) 0.298(-7)(+7)

365 2.29(-21)(+20) 3.586(-135)(+134) 13.04(-40)(+40) 16.63(-53)(+53) 55.7(-1.9)(+1.9) 0.299(-7)(+7)

370 2.24(-21)(+20) 3.617(-135)(+134) 13.09(-40)(+40) 16.71(-53)(+53) 55.8(-1.9)(+2.0) 0.300(-7)(+7)

375 2.20(-21)(+20) 3.647(-134)(+134) 13.14(-40)(+40) 16.78(-53)(+53) 55.8(-1.9)(+2.0) 0.301(-7)(+7)

380 2.15(-22)(+21) 3.675(-134)(+133) 13.18(-40)(+40) 16.85(-53)(+53) 55.9(-2.0)(+2.0) 0.302(-7)(+7)

385 2.11(-22)(+21) 3.703(-134)(+133) 13.22(-40)(+41) 16.92(-53)(+53) 56.0(-2.0)(+2.0) 0.302(-7)(+7)

390 2.07(-22)(+21) 3.730(-133)(+132) 13.26(-40)(+41) 16.99(-53)(+53) 56.1(-2.0)(+2.1) 0.303(-7)(+7)

395 2.03(-22)(+22) 3.756(-133)(+132) 13.30(-40)(+41) 17.05(-53)(+53) 56.2(-2.0)(+2.1) 0.304(-7)(+7)

400 1.99(-22)(+22) 3.782(-132)(+132) 13.34(-40)(+41) 17.12(-53)(+53) 56.2(-2.1)(+2.1) 0.304(-7)(+7)

Table I continued

ct an bn cn dn
3.8706 -8.7704 3.9200 0 0.3419

t0 ad bd cd dd
0.9761 -1.2600 0.8425 0 -0.0475

Table II: Parameters used in the ansatz given in Eq. (16) for
the pressure of (2+1)-flavor QCD in the temperature interval
T 2 [100 MeV, 400 MeV].

value.
The softest point of the EoS is of interest in the phe-

nomenology of heavy ion collisions as it characterizes
the temperature and energy density range in which the
expansion and cooling of matter slows down. The sys-
tem spends a longer time in this temperature range, and
one expects to observe characteristic signatures from this
regime. To facilitate a more direct comparison with
experiments, we show c2s as a function of the energy
density in physical units in Fig. 7 (bottom) using the
parametrization given in Eq. 16 to convert temperature
to energy density. At the softest point, the energy den-
sity is only slightly above that of normal nuclear mat-
ter, ✏

nuclear

= 150 MeV/fm3. In the crossover region,
Tc = (154 ± 9) MeV [5], the energy density varies from
180 MeV/fm3 at the lower edge to 500 MeV/fm3 at the
upper edge, slightly above the energy density inside the
proton ✏

proton

= 450 MeV/fm3.
The QCD crossover region, thus, starts at or close to

the softest point of the EoS and the entire crossover re-
gion corresponds to relatively small values of the energy

density, (1.2�3.1)✏
nuclear

. This value is about a factor of
four smaller than that of an ideal quark-gluon gas in this
temperature range. In the next subsection, we will dis-
cuss to what extent this has consequences for the size of
fluctuations in the energy density, i.e., the specific heat.

B. Specific heat and deconfinement

The intuitive characterization of deconfinement at the
QCD phase transition is that the liberation of many new
degrees of freedom give rise to a rapid increase in the
energy density, ideally with an infinite slope at Tc as in
a conventional second order phase transition. This rapid
rise would then show up as a peak (or even a divergence)
in the specific heat, which could serve as an indicator for
the pseudo-critical (or critical) temperature. However,
the specific heat of (2+1)-flavor QCD, shown in Fig. 8,
exhibits a rapid increase but no peak. In the crossover
region, CV /✏ ' 8/T is a factor of two larger than for
an ideal quark-gluon gas; the specific heat reaches about
half of its ideal gas value, (CV /T

3)ideal = 4(✏/T 4)ideal =
95⇡2/15; and the energy density reaches only about one
quarter of its limiting high temperature, ideal gas value.
The analysis of the quark-mass dependence of the QCD

transition temperature, the chiral condensate and, in par-
ticular, the peak in the chiral susceptibility suggest that
for physical values of the quark masses QCD is su�-
ciently close to the chiral limit to be sensitive to the chi-
ral phase transition [5] and exhibit an almost universal,
pseudo-critical behavior controlled by it. The peak ob-
served in the chiral susceptibility is dominated by the sec-
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Figure 7: The speed of sound squared from lattice QCD and
the HRG model versus temperature (top) and energy den-
sity (bottom). In the upper figure, our results (HISQ) are
compared with those obtained with the stout action [26].
The vertical band marks the location of the crossover region
Tc = (154±9) MeV in the upper figure and the corresponding
range in energy density , ✏c = (0.18 � 0.5) GeV/fm3, in the
lower figure. The dark line within each error band is the pre-
diction of the analytical parameterization given in Eq. (16).

ond derivative of the singular part of the free energy with
respect to the quark mass [5]. Extending that generic
scaling analysis, one may have expected that, for physi-
cal quark masses, the pseudo-critical behavior would also
lead to large fluctuations in the energy density and that
the specific heat would exhibit a peak in the crossover re-
gion controlled by the second derivative with respect to
temperature of the same singular part of the free energy.

There may be at least two reasons for the di↵erence
in behavior between the chiral susceptibility and the
specific heat, which are second derivatives of the parti-
tion function with respect to the quark mass and the
temperature, respectively. First, thermal fluctuations
are controlled by the thermal critical exponent ↵, i.e.,
CV /T

3 ⇠ |T � Tc|�↵. In the 3-d O(4) universality class,
which is relevant for the chiral phase transition, the ex-
ponent ↵ ' �0.21 is negative [52]. Consequently, unlike

4�/T4
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Figure 8: Error bands showing the continuum extrapolation
of the specific heat and energy density and solid lines obtained
from the parametrization given in Eq. (16). Also shown are
the HRG estimates at low temperatures and the ideal gas
limit at high temperatures.

the chiral susceptibility, the specific heat stays finite at
Tc even in the chiral limit. The singular part of the free
energy [52], which gives the leading temperature depen-
dence in the vicinity of Tc, contributes only a cusp in CV .
This can be seen by examining the energy density near
Tc,

✏

T 4

= e
0

+ e
1

✓
T � Tc

Tc

◆
+O �|T � Tc|1�↵

�
, (20)

where the dominant contribution, e
0

, comes from the reg-
ular part and the singular contributions, ⇠ |T � Tc|1�↵,
are sub-dominant. From Eq. (17), we get

CV

T 3

= c
0

+
A±

↵

����
T � Tc

Tc

����
�↵

+O (T � Tc) , (21)

with c
0

= 4e
0

+e
1

and A+ (A�) are the amplitudes above
(below) Tc. The ratio of these amplitudes is universal and
positive; A+/A� = 1.842(43) in the 3-d O(4) universality
class [52]. Since ↵ is negative, the singular part gives
only a cusp, which should persist in the chiral limit but
may not be easy to detect if the regular contributions are
large.
The second reason for the lack of a peak in CV /T

3

is that the contributions from the regular part of the
free energy are large in the high temperature phase [52],
and are O(g0) at infinite temperature. Furthermore, as
discussed above, the regular terms dominate even in the
crossover region. To make this observation more explicit,
we note from Eq. (17) that CV /T

3 can be written in
terms of the energy density, ✏/T 4, and its derivative,

T
d✏/T 4

dT
⌘ CV

T 3

. (22)

The dominant singular terms are contained in the sec-
ond term (CV /T

3) or, more specifically, in the temper-
ature derivative of the trace anomaly, i.e., the second
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Figure 9: Derivative of ✏/T 4 with respect to temperature.
The vertical band gives the chiral crossover temperature de-
termined from the location of the peak in the disconnected
chiral susceptibility.

term in Eq. (19). The contribution of the regular terms
to CV /T

3 is strongly suppressed at high temperatures;
it is zero in the infinite temperature ideal gas limit and
receives contributions starting at O(g4) in perturbation
theory. Thus, while CV and CV have identical leading
contributions from the singular part near Tc, the con-
tribution from the regular part is much smaller in CV .
Consequently, the singular behavior is not masked and
CV has a pronounced peak close to the chiral crossover
region as shown in Fig. 9. To summarize, the location of
the peak in the temperature derivative of ✏/T 4 is a good
indicator of deconfinement, i.e., the liberation of quark-
gluon degrees of freedom, and occurs close to the chiral
transition in QCD as shown in Fig. 9.

C. Approach to the perturbative limit

In this subsection, we discuss how our results for the
(2+1)-flavor EoS connect to analytic calculations at high
temperatures.

At su�ciently high temperatures, thermodynamics
should be describable in terms of a weakly interacting
quark-gluon gas, and at infinite temperature all thermo-
dynamic quantities will converge to the ideal gas limit.
Plots in Fig. 5 show that at our highest temperature
value, T = 400 MeV, the entropy and energy density
and pressure are still 13%, 18% and 27%, respectively,
below the ideal gas limit. In contrast to other quan-
tities, e.g., susceptibilities of conserved charge fluctua-
tions, these deviations from the ideal gas limit are still
quite large. This is probably due to large nonperturba-
tive contributions in the gluonic sector of QCD which are
present in bulk thermodynamic observables but are sup-
pressed in observables that, at tree level, only depend on
the quark sector of QCD.

Although, for some observables, resummation [53] or

dimensional reduction [54] based perturbative calcula-
tions show good agreement with lattice QCD calcula-
tions already at temperatures T ⇠ 400 MeV, for oth-
ers this is not the case. In particular, their functional
dependence on temperature is still significantly di↵erent
in this temperature range, which can lead to larger dif-
ferences in higher order derivatives between perturbative
and lattice QCD calculations. As our current continuum-
extrapolated EoS is limited to T < 400 MeV, we cannot
perform a detailed comparison with perturbation theory
but point out a few qualitative features.
We have shown in Fig. 6 that continuum-extrapolated

results for the trace anomaly obtained with the stout
and the HISQ discretization schemes agree within er-
rors. At high temperatures, however, the HISQ results
are systematically above the stout results. This prop-
agates into other thermodynamic observables, e.g., the
pressure. The systematic di↵erences, however, cancel to
a large extent in ratios. For example, the ratio of the
trace anomaly and the pressure,

⇥µµ

p
=
✏

p
� 3 , (23)

is in excellent agreement between the two calculations
and thus provides a good starting point for a compar-
ison with high temperature perturbative calculations.
In Fig. 10, we show results for the ratio ⇥µµ/p and
compare with perturbative calculations performed in the
Hard Thermal Loop (HTL) [53] and Electrostatic QCD
(EQCD) [54] schemes. The broad band for the three-loop
HTL calculation corresponds to varying the renormaliza-
tion scale in the interval µ = (1 � 4)⇡T and the black
line in this band corresponds to µ = 2⇡T . The EQCD
and HTL results for µ = 2⇡T are in good agreement,
and the lattice QCD results approach these estimates for
T>⇠500 MeV.
In Fig. 11, we compare the three-loop HTL estimates

with lattice QCD calculations of the trace anomaly (top)
and the pressure (bottom). Also shown, with a dashed
line in Figs. 10 and 11, is the result of an O(g6) cal-
culation performed in the dimensional reduction scheme
(EQCD). The lattice QCD results are in qualitative
agreement with these perturbative calculations, with the
O(g6) EQCD estimate lying below the lattice QCD re-
sults for the trace anomaly and above for the pressure at
T = 400 MeV.
One could try fixing the scale uncertainty in the HTL

calculation by matching one of the observables to the
lattice QCD result, e.g., the pressure. Results for other
observables, e.g., the trace anomaly would then be pa-
rameter free predictions. It is clear from Fig. 11 that
such a simultaneously agreement between HTL and lat-
tice QCD calculations of p/T 4 and (✏ � 3p)/T 4 is not
forthcoming. Making the HTL and the lattice QCD esti-
mates agree for the trace anomaly by reducing the value
for the renormalization scale µ would decrease the HTL
results for p/T 4 even further and, thereby, increase the
deviation from the lattice QCD results.
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Figure 10: The ratio of the trace anomaly and the pressure
from (2+1)-flavor QCD calculations with the HISQ and stout
actions, respectively. These results are compared to HTL and
EQCD (dashed line) calculations. The black line corresponds
to the HTL calculation with renormalization scale µ = 2⇡T .

Lastly, the EQCD result for the pressure in the tem-
perature range (400 � 1000) MeV is about 10% larger
than the HTL result with µ = 2⇡T . To resolve the open
question whether at these high temperatures the pres-
sure obtained from lattice QCD calculations is better de-
scribed by the HTL or the EQCD calculations requires
lattice simulations at higher temperatures.

VI. CONCLUSIONS

We have calculated the trace anomaly and the equa-
tion of state in (2+1)-flavor QCD with almost physi-
cal quark masses using the HISQ/tree action on lattices
with temporal extent N⌧ = 6, 8, 10, and 12. We find
that the lattice discretization errors in the HISQ/tree
action are small, and we obtain reliable continuum ex-
trapolated results for a number of thermodynamic quan-
tities for 130 MeV < T < 400 MeV. In fact, the trace
anomaly calculated on the N⌧ = 12 lattices agrees with
the continuum-extrapolated results within errors. Our
main results are summarized in Figs. 1, 5, and 6. Based
on these results, we propose in Eq. 16 an analytical pa-
rameterization of the pressure for use in phenomenolog-
ical studies that matches the HRG estimates below T =
130 MeV and the lattice data between (130� 400) MeV.

We have compared our new results obtained using
the HISQ/tree action with our previous calculations per-
formed using the asqtad and the p4 actions [23], and with
the recent continuum extrapolated stout results [26]. For
T < 300 MeV, the HISQ/tree results are very di↵erent
from the results obtained using the p4 and the asqtad
actions on N⌧ = 8 lattices, i.e., without an extrapola-
tion to the continuum limit. At higher temperatures, the
results show reasonable agreement as expected since all
three actions have small lattice artifacts.

(�-3p)/T4
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O(g6) EQCD
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0

1

2

3

4

130 200 300 400 500 600 800 1000

p/pideal

T [MeV]

3-loop HTL
O(g6) EQCD

HISQ

0.0

0.2

0.4

0.6

0.8

1.0

130 200 300 400 500 600 800 1000

Figure 11: Comparison of the (2+1)-flavor calculation of the
trace anomaly (top) and pressure (bottom) with HTL and
EQCD (dashed line) calculations. The black line corresponds
to the HTL calculation with renormalization scale µ = 2⇡T .
Note that this solid line would move up for the trace anomaly
and move down for the pressure if the scale µ in HTL is re-
duced.

Results for our continuum extrapolated trace anomaly
presented in Sec. IV agree well with those from the stout
action [26]. The discrepancy between the HotQCD re-
sults and the stout results discussed in [23, 26] was due
to the large cuto↵ e↵ects in the previous estimates with
the p4 and the asqtad actions and because our earlier re-
sults had not been extrapolated to the continuum limit.

We find reasonably good agreement for the pressure
obtained using the stout and the HISQ/tree actions for
T < 300 MeV as shown in Fig. 6. At higher tempera-
tures, there is some tension between the two estimates
because the results for the trace anomaly, ⇥µµ(T )/T 4,
obtained with the HISQ/tree action lie systematically
above those from the stout action. Consequently, the
pressure, which is the integral of ⇥µµ(T )/T 5, will start
to di↵er significantly at high temperatures if the ob-
served trends persist. In this paper, we focused on the
temperature region 130 MeV < T < 400 MeV, which
is the most relevant for phenomenological applications.
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Over this temperature range, the di↵erence is unlikely to
have a significant e↵ect on the modeling of the hydro-
dynamic evolution of the system produced in heavy ion
collisions (see the discussion in Ref. [45]). It is important
to check, however, if this tension persists at higher tem-
peratures, especially if one wants to determine to what
extent the quark-gluon plasma is strongly or weakly cou-
pled by comparing lattice and resummed perturbation
theory results for the pressure or for the entropy density.
Such calculations are left for future studies.
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Appendix A: HISQ ensembles and topological
charge history

1. HISQ ensembles

To simulate the HISQ/tree action, we use the same
Rational Hybrid Monte Carlo algorithm [55] with mass
preconditioning [56] as in the previous study Ref. [5].
Details of these simulations are given in Ref. [57] and in
Table III we present the key lattice parameters of our sim-
ulation, namely the gauge coupling � = 10/g2, the quark
masses, the lattice dimensions, the accumulated statistics
in terms of molecular dynamics time units (TU), and the

length of the trajectories. The zero temperature lattices
were saved every 5 TUs (or 6 TU for the fine lattices),
and the finite temperature lattices were saved every 10
TUs.

2. Topological charge history

The topological charge history gives an indication of
the ergodicity of the molecular dynamics evolution. Ide-
ally, we want a reasonably good coverage of the most
probable topological charge sectors. This occurs when
tunneling between the topological charge sectors is rea-
sonably frequent. It is expected that the tunneling rate
decreases as the lattice spacing is decreased. Therefore,
to test ergodicity in our molecular dynamics evolution,
we look at the least favorable case, namely our finest
lattices.
In our previous study we checked the evolution of

the topological charge in our simulations down to lat-
tice spacings a = 0.066 fm, and found that it fluctuated
quite rapidly [5]. In the present study the lattice spac-
ing for our two finest lattices corresponding to � = 7.596
and � = 7.825 is smaller still, namely, a = 0.049 fm and
0.041 fm, respectively. In Fig. 12 we show the evolution
of the topological charge for those two ensembles. The
figures show a slower tunneling rate than in our previ-
ous study, but we still see a reasonable coverage of the
topological charge sectors.

Appendix B: Lattice scale

To translate lattice observables to physical dimension-
full quantities, we need to measure the lattice spacing.
We consider three methods for determining the scale: the
static-quark-potential parameters r

1

or r
0

, the gradient
flow parameter w

0

[41], and the kaon decay constant fK .
Our preferred method uses the static quark potential.
The other methods are used as a cross check. We discuss
here the the former three ways to set the scale and defer
the discussion of fK to Appendix C.

1. Static quark potential

The static quark potential is used indirectly to set the
scale. In brief, a standard radius r

0

[38] or r
1

[39] is cal-
culated from the measured heavy quark potential using
Eqs. (1) and (2). On any ensemble, the standard radii
are first determined in lattice units: r

0

/a and r
1

/a. The
values of r

0

and r
1

in the continuum limit are known in
physical units from other lattice studies, based on, for
example, the experimental value of f⇡. From them and
r
0

/a one can infer the value of a.
The static potential for the HISQ/tree action has

been studied in Ref. [5] for a large range of gauge cou-
plings �. We extended these studies in the following

nijhuis2
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Figure 12: The evolution of topological charge in Monte-Carlo time for � = 7.596 (left) and � = 7.825 (right). The top and
bottom panels correspond to two di↵erent streams for hybrid Monte-Carlo evolution.

ways. We improved significantly the statistical accu-
racy of the calculation of the static potential at the
highest beta values considered in Ref. [5], namely for
� = 6.88, 6.95, 7.03, 7.15 and 7.28. To them we added
calculations of the potential at � = 6.740, 7.373, 7.596,
and 7.825. As in our previous study, we used Coulomb
gauge fixing and calculated the potential from the cor-
relation of two Wilson lines of length ⌧ at distance R.
The potential is then obtained from the logarithm of
the ratio of two such correlators at neighboring ⌧ val-
ues. We fit this ratio to a constant plus a term that
decays exponentially in Euclidean time ⌧ in the interval
[⌧min : ⌧max]. We also studied the variation of the po-
tential due to di↵erent choices [⌧min : ⌧max] to estimate
possible systematic errors. To be specific, we used finally
[2:4], [3:7], [4:9], [3:9], [4:9], [4:10], [4:10], [5:8], and [6:11]
for � = 6.740, 6.88, 6.95, 7.03, 7.15, 7.28, 7.373, 7.596,
and 7.825, respectively.

The scales r
0

/a or r
1

/a are then determined by sepa-
rately fitting the resulting potential to a Coulomb-plus-
linear-plus-constant form in the r-intervals around the
values of r

1

and r
0

, respectively. We vary the fit inter-
vals, and the variations in the extracted values of r

1

/a
and r

0

/a are used as estimates of systematic errors. In
most cases, the systematic errors are larger than the sta-
tistical ones. The statistical and systematic errors are
added in quadrature to estimate the total error for r

0

and r
1

. The values r
0

/a, r
1

/a and their ratios r
0

/r
1

de-
termined in this study as well as from Ref. [5] are given
in Table IV. As in our previous study, the ratio r

0

/r
1

appears to be independent of � (lattice spacing) within
the estimated errors [5]. Accordingly, as before, we fit
the values of r

0

/r
1

given in Table IV to a constant for
� � 6.423 and obtain

(r
0

/r
1

)cont = 1.5092± 0.0039, �2/dof = 0.22 . (B1)

This value agrees well with our previous estimate r
0

/r
1

=
1.508(5) [5]. We also fit the ratio r

0

/r
1

using only the

data for � � 6.664 and � � 6.608, obtaining r
0

/r
1

=
1.5083(44) and r

0

/r
1

= 1.5075(43) with similar �2/dof.
These values agree well with the one given in Eq. (B1).
Therefore we use Eq. (B1) as our final estimate for r

0

/r
1

.
To determine the lattice spacing as function of �, we

fit a/r
1

to the Allton-type ansatz [58],

a

r
1

=
c
0

f(�) + c
2

(10/�)f3(�)

1 + d
2

(10/�)f2(�)
, (B2)

f(�) =

✓
10b

0

�

◆�b1/(2b
2
0)

exp(��/(20b
0

)) . (B3)

Here b
0

and b
1

are the well-known coe�cients of the
two-loop beta function, which for the three-flavor case
are b

0

= 9/(16⇡2), b
1

= 1/(4⇡4). At small �, the
parameter r

1

is small in lattice units. Therefore, to
avoid possibly large discretization e↵ects, for � < 6.423,
where r

0

/a is more reliably determined, we use r
1

/a =
r
0

/a/(r
0

/r
1

)cont with (r
0

/r
1

)cont from Eq. (B1) (see dis-
cussions in Ref. [5]). The fit gives �2/dof = 0.25 and

c
0

= 43.1± 0.3 , (B4)

c
2

= 343236± 41191 , (B5)

d
2

= 5514± 755 . (B6)

The errors on the above fit parameters have also been
estimated using the bootstrap method which gives very
similar results. The di↵erences between the above
parametrization of r

1

/a and the previous one from
Ref. [5] are less than 0.2% for � < 6.8. For larger beta
values the di↵erences are larger but do not exceed 1.3%.
To convert all quantities to physical units, as in Ref. [5],
we use the value r

1

= 0.3106 fm from [40].
To test the uncertainty in the scale parametrization,

we also fit the data for a/r
1

to the asymptotic form f(�)
times a smoothing spline. The smoothing spline is de-
termined by minimizing the �2 plus the integral of the
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T = 0 N⌧ = 6 N⌧ = 8 N⌧ = 10 N⌧ = 12

� ml ms N3
s ⇥N⌧ TU length TU TU TU TU

5.900 0.00660 0.1320 243 ⇥ 32 3700 1/4 30290 — — —

5.950 0.00615 0.1230 243 ⇥ 32 4715 1/4 30990 — —

6.000 0.00569 0.1138 243 ⇥ 32 4890 1/3 31730 — — —

6.025 0.00550 0.1100 243 ⇥ 32 5250 1/3 33990 — — —

6.050 0.00532 0.1064 243 ⇥ 32 4655 1/3 32100 74210 — —

6.075 0.00518 0.1036 243 ⇥ 32 4085 1/3 32990 — — —

6.100 0.00499 0.0998 283 ⇥ 32 4190 1/3 39900 — — —

6.125 0.00483 0.0966 324 8645 1/3 32990 67720 — —

6.150 0.00468 0.0936 243 ⇥ 32 7795 1/3 31130 — — —

6.175 0.00453 0.0906 324 9080 1/3 30990 60480 — —

6.195 0.00440 0.0880 324 8445 1/2 33150 25790 — —

6.245 0.00415 0.0830 324 8505 1/2 30990 28070 — —

6.285 0.00395 0.0790 324 7350 1/2 30990 40250 — —

6.341 0.00370 0.0740 324 6705 1 30990 33310 — —

6.354 0.00364 0.0728 324 8000 1 30990 220312 — —

6.390 0.00347 0.0694 324 4602 1 — 269636 — —

6.423 0.00335 0.0670 324 7970 1 30990 113315 — —

6.460 0.00320 0.0640 323 ⇥ 64 2900 1 — 84841 — —

6.488 0.00310 0.0620 324 19465 1 30990 65281 103060 —

6.515 0.00302 0.0604 324 17385 1 30990 140212 108530 —

6.550 0.00291 0.0582 324 8805 1 30990 136781 — —

6.575 0.00282 0.0564 324 21455 1 30990 144241 106750 —

6.608 0.00271 0.0542 324 21195 1 30990 171977 113920 —

6.664 0.00257 0.0514 324 21200 1 30990 94440 175500 —

6.740 0.00238 0.0476 484 8005 1 — 88520 217740 48230

6.800 0.00224 0.0448 324 39077 1 30990 110200 299550 57136

6.880 0.00206 0.0412 484 8095 1 — 110020 360690 65678

6.950 0.00193 0.0386 324 39670 1 30990 117780 318700 76080

7.030 0.00178 0.0356 484 16390 1 — 96991 152330 97801

7.150 0.00160 0.0320 483 ⇥ 64 8094 2 29620 96342 163900 106150

7.280 0.00142 0.0284 483 ⇥ 64 7956 2 37340 103748 118460 110330

7.373 0.00125 0.0250 483 ⇥ 64 9246 2 20780 116390 108100 164450

7.596 0.00101 0.0202 644 9514 2 36650 120000 113510 171020

7.825 0.00082 0.0164 644 9536 2 44390 119200 116070 105970

Table III: Parameters used in simulations with the HISQ/tree action on N⌧ = 6, 8 10, and 12 lattices and the LCP defined
by ml/ms = 0.05. The quark masses are given in units of the lattice spacing a. The statistics in molecular dynamics time
units TU are given for both the zero and finite temperature runs. The column “length” lists the length of the trajectory in
TU before the Metropolis accept-reject step for zero-temperature runs. All the finite temperature lattices have trajectories of
unit length except for � = 5.90 and 5.95, where it was 0.5 TU. The lattice sizes used for the finite temperature simulations
were 243 ⇥ 6, 323 ⇥ 8, 403 ⇥ 10, and 483 ⇥ 12. Measurements were performed after 1 TU on all ensembles, except for the large
zero-temperature lattices with length=2 TU, where they were performed every 2 TUs.
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� r0/a r1/a r0/r1

5.900 1.909(11) 1.230(133) 1.552(168)

6.000 2.094(21) 1.386(80) 1.511(89)

6.050 2.194(22) 1.440(31) 1.524(36)

6.100 2.289(21) 1.522(30) 1.504(33)

6.195 2.531(24) 1.670(30) 1.516(31)

6.285 2.750(30) 1.822(30) 1.509(30)

6.341 2.939(11) 1.935(30) 1.519(24)

6.354 2.986(41) 1.959(30) 1.524(31)

6.423 3.189(22) 2.096(21) 1.522(18)

6.460 3.282(32) 2.165(20) 1.516(20)

6.488 3.395(31) 2.235(21) 1.519(20)

6.550 3.585(14) 2.369(21) 1.513(15)

6.608 3.774(20) 2.518(21) 1.499(15)

6.664 3.994(14) 2.644(23) 1.511(14)

6.740 4.293(32) 2.856(11) 1.503(13)

6.800 4.541(30) 3.025(22) 1.501(15)

6.880 4.959(28) 3.265(23) 1.519(14)

6.950 5.249(20) 3.485(22) 1.506(11)

7.030 5.691(32) 3.763(13) 1.512(10)

7.150 6.299(59) 4.212(42) 1.495(20)

7.280 7.140(53) 4.720(33) 1.513(15)

7.373 7.801(79) 5.172(34) 1.508(18)

7.596 9.443(237) 6.336(56) 1.490(40)

7.825 11.51(378) 7.690(58) 1.497(50)

Table IV: Values of r1 and r0 in lattice units for di↵erent �

square of the second derivative of the fit function in the
considered interval times a real parameter sm. We chose
the largest possible value of the smoothing parameter
sm = 0.7 that still gives an acceptable �2/dof = 1.13.
To estimate the uncertainties of the spline, we performed
a bootstrap analysis. In Fig. 13, we show the r

1

scale
as a function of �, normalized by the asymptotic two-
loop beta function f(�). The errors are bootstrap errors.
The Allton-type fit and the smoothing spline fits give
very similar results as well as uncertainties.

To calculate the EoS, we also need the nonperturbative
beta function

R� = �a
d�

da
=

r
1

a

✓
d(r

1

/a)

d�

◆�1

. (B7)

Figure 13 shows R� obtained from both the Allton-type
and smoothing-spline fits, together with bootstrap er-
rors. The fit and the splines agree within the errors. The
largest error in R� is about 3%. At su�ciently large �,
i.e., close to the continuum limit, R� is expected to be
given by its asymptotic two-loop form

R2�loop

� = 20b
0

+ 200b
1

/�. (B8)

The asymptotic limit is approached from below [22], as
with the p4 action. However, for the HISQ action, we
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Figure 13: The scale a/r1 normalized by the asymptotic two-
loop beta function (top) and the nonperturbative beta func-
tion, R� , (bottom) as a function of �, which has been derived
from this using Eq. (B7); the fit and spline interpolations are
also shown.

see that the deviations are at most 20% over the range
considered, compared with a factor of two deviation in
the case of the p4 action [22]. In our calculations of the
EoS we use R� obtained from the fit with the Allton-type
ansatz.
Finally, we compare the potential calculated at dif-

ferent �. To do so, we normalize it with an additive
constant. We do this by requiring that the potential
V (r

1

) = 0.2060/r
1

. This normalization condition is
equivalent to the one used in Ref. [5]. Here we choose
r
1

, because it has smaller errors on fine lattices. The
normalized potential in units of r

1

is plotted in Fig. 14
against the tree-level improvement radius r ! rI , where
rI is the improved distance defined from the free lattice
gluon propagator [5]. Down to distances r = 0.2r

1

or
r = 0.062fm, we find no significant dependence on the
lattice spacing within the estimated errors.
To cross check our determination of the lattice spac-

ing, we also calculated the scale w
0

, defined from the
gradient flow [41]. Our results for the w

0

scale are shown
in Fig. 15 in units of r

1

. As above, for � < 6.423 the
value of r

1

was estimated as r
0

/(r
0

/r
1

)cont. As one
can see from the figure, this ratio appears to scale as
a2 for (a/r

1

)2 < 0.4, i.e., for � � 6.195. We per-
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form a continuum extrapolation of the ratio w
0

/r
1

us-
ing a simple form (w

0

/r
1

)cont + hw(a/r1)2. In the con-
tinuum limit, we obtain (w

0

/r
1

)cont = 0.5619(21) or
w

0

= 0.1749(14) fm. This value agrees with the value
quoted in Ref. [41], w

0

= 0.1755(18)(4) fm, within the es-
timated errors. Our value of w

0

is higher than the prelim-
inary value reported by MILC w

0

= 0.1711(2)(8)(2)(3)fm
for 2+1+1 flavor QCD [59]. For the slope parameter we
get hw = �0.1076(149) with �2/dof = 0.38. If we use the
w

0

scale instead of the r
1

scale, the temperature values
for N⌧ = 8 lattices for T < 150 MeV would be lower by
6%, and for N⌧ = 10 and 12 calculations the di↵erences
in the temperature scale would be only 4% or less.

Appendix C: Hadronic observables

1. Line of constant physics

It is standard practice to present results for thermody-
namic quantities as a function of temperature at fixed,
renormalized quark masses. We start by setting a con-

 0.99

 1

 1.01

 1.02

 1.03

 1.04

 1.05

 5.8  6  6.2  6.4  6.6  6.8  7  7.2  7.4  7.6  7.8  8

β

M
ηss/M

LCP
ηss

Figure 16: The calculated masses of the ⌘ss̄ meson normalized
by the chosen LCP value M⌘

ss̄

= 695 MeV as a function of
�.

stant value of the strange quark mass ms, preferably, its
physical value, and then set the mass of the light quarks
to ms/20. We determine the strange quark mass by re-
quiring that the mass of the un-mixed pseudoscalar ss̄
meson, ⌘ss̄ is equal to a prescribed value expressed in
units of r

1

. We aim at the value suggested by leading
order chiral perturbation theory, where the mass of ⌘ss̄
meson in terms of the kaon and pion masses is, M⌘

ss̄

=p
2m2

K �m2

⇡ = 686 MeV. In practice, this requires some
tuning and, as discussed later, it turns out that our LCP
is best described by the value M⌘

ss̄

= 695 MeV. Setting
the line of constant physics (LCP) in this way requires a
combination of determining the lattice spacing in physi-
cal units (see Appendix B) and the hadron spectrum at
zero temperature, including, at least, the mass of the ⌘ss̄,
a calculation with costs that mount as the lattice spac-
ing decreases. Thus, some retuning is usually needed to
correct for an imprecise determination.

For the present study, we extend the LCP of our pre-
vious work [5] to weaker coupling in order to cover the
range needed for N⌧ = 12. In our previous work, the
hadron spectrum was measured along the LCP up to � =
6.8. The masses of the pseudoscalar mesons were also
measured at � = 7.28 with the relatively low statistics of
about 1,400 equilibrated time units. Here, we added or
extended nine T = 0 ensembles with 6.8 < �  7.825 as
described in Appendix B. On the extended ensembles, in
addition to measuring thermodynamic quantities needed
for the zero temperature subtraction, we measured the
masses and decay constants of the pseudoscalar mesons
and the masses of the vector mesons. These quantities al-
low us to quantify the lattice artifacts due to taste break-
ing and can be used as an alternative means to set the
lattice spacing, thus providing additional validation of
our calculations.

The masses of the three pseudoscalar mesons are given
in lattice units in Table V. The mass of the ⌘ss̄ normalized



20

� aM⇡ aMK aM⌘
ss̄

5.900 0.20162(09) 0.63407(17) 0.86972(11)

6.000 0.18381(37) 0.57532(51) 0.79046(27)

6.195 0.15143(14) 0.47596(16) 0.65506(11)

6.285 0.13823(50) 0.43501(47) 0.59951(28)

6.354 0.12923(15) 0.40628(20) 0.55982(17)

6.423 0.12022(12) 0.37829(19) 0.52161(17)

6.460 0.11528(21) 0.36272(34) 0.50137(32)

6.488 0.11245(15) 0.35313(27) 0.48716(17)

6.515 0.10975(12) 0.34453(29) 0.47516(29)

6.550 0.10629(16) 0.33322(38) 0.45989(24)

6.575 0.10469(68) 0.32521(55) 0.44869(50)

6.608 0.10001(17) 0.31333(28) 0.43286(29)

6.664 0.09572(18) 0.29837(37) 0.41178(32)

6.740 0.087991(64) 0.27735(12) 0.38342(10)

6.800 0.0849(18) 0.26387(99) 0.36257(68)

6.880 0.07714(16) 0.24314(16) 0.33630(11)

7.030 0.06744(15) 0.21202(19) 0.29381(20)

7.150 0.06126(18) 0.19231(20) 0.26631(16)

7.280 0.05516(17) 0.17209(19) 0.23824(18)

7.373 0.04990(22) 0.15530(16) 0.21531(12)

7.596 0.04106(44) 0.12896(30) 0.17810(12)

7.825 0.03425(23) 0.10695(46) 0.14731(15)

Table V: The pseudoscalar meson masses for the HISQ/tree
action along the ml = 0.05ms LCP.

by the value M⌘
ss̄

= 695 MeV used to define the LCP is

plotted in Fig. 16 as a function of �. As one can see, the
central values are systematically above the nominal value
of 685.8 MeV quoted in Ref. [60]. The average value from
ensembles with � < 7.03 is about 695 MeV. Therefore,
we define our LCP using this value. That is, we choose
a strange quark mass that gives M⌘

ss̄

= 695 MeV. The
resulting strange quark mass is then about 2.6% larger
than its physical value. For �  7.03 we find that M⌘

ss̄

(and, in turn, the strange quark mass) along the LCP
agrees with the physical values within (1–2)�. For the
finest ensembles, � > 7.03, we see a systematic deviation
of M⌘

ss̄

towards higher values — by as much as about
3.5%.

For the calculation of the trace anomaly, we need the
strange quark mass ms and its derivative as a function
of � along the LCP. As we have seen, the strange-quark
mass input into the simulation drifts slightly above the
LCP. We correct for this drift using lowest order chiral
perturbation theory, i.e., we assume that M2

⌘
ss̄

is propor-
tional to ms and calculate the strange quark mass that
gives M⌘

ss̄

= 695 MeV. This corrected value is compared
with the value used in the simulations in Fig. 17. For
the worst case, � = 7.825, this amounts to lowering ms

used by about 7% from the simulated value. The pion
and kaon masses follow a pattern similar to that of the
⌘ss̄ meson, i.e., they are roughly constant for � < 7.03
and increase for larger beta values by approximately the
same fractional amount.

We then fit the product r
1

mLCP
s using a

renormalization-group-inspired form

r
1

mLCP
s ⌘ m̃s = r

1

mRGI

✓
20b

0

�

◆
4/9 1 +m

1

10

� f2(�) +m
2

( 10� )2f2(�) +m
3

10

� f4(�)

1 + dm
1

10

� f2(�)
, (C1)

where f(�) is the 2-loop beta function given by Eq. B3.
For the fit parameters we get

mRGI = 0.2609± 0.0030, (C2)

m
1

= 35600± 6097, (C3)

m
2

= �21760± 3202, (C4)

m
3

= (2.67± 0.50) · 107, (C5)

dm
1

= 2420± 1346 (C6)

�2/dof = 0.51. (C7)

The resulting fit is shown in Fig. 17 together with a
smoothing spline fit to the input strange-quark masses.

2. Pseudoscalar decay constants

The decay constants of pseudoscalar mesons can be
used to check the lattice scale and to estimate the cuto↵
e↵ects in the T = 0 calculations. Results for the decay
constants are shown in Table VI.

Since they are quite sensitive to the values of the quark
masses, we need to take into account the deviations from
the LCP, as well as the fact that even on the LCP our
quark masses are slightly heavier than the physical ones.
Thus, we need to interpolate/extrapolate in the quark
masses. To do this we assume that the pseudoscalar de-
cay constants depend linearly on the sum of the quark
masses and use the numerical results given in Table VI
to determine the slope for each value of �. The values
of the ⌘ss̄ meson decay constant f⌘ and the kaon decay
constant fK have been interpolated to the physical quark
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� af⇡ afK af⌘ # sources

6.000 0.11243(21) 0.13224(31) 0.15290(22) 1

6.195 0.09179(21) 0.10835(13) 0.12525(13) 1

6.285 0.08366(22) 0.09826(13) 0.11390(13) 1

6.354 0.07825(40) 0.09146(19) 0.10598(11) 1

6.423 0.07241(18) 0.08515(11) 0.09854(07) 2

6.460 0.06885(11) 0.08185(09) 0.09454(08) 4

6.515 0.06534(18) 0.07707(15) 0.08946(09) 4

6.575 0.06104(49) 0.07265(19) 0.08405(14) 2

6.740 0.052190(50) 0.061731(41) 0.071354(27) 2

6.800 0.04883(83) 0.05774(18) 0.06717(14) 1

6.880 0.045544(67) 0.053749(42) 0.062236(28) 2

7.030 0.03951(12) 0.046566(68) 0.054148(43) 2

7.150 0.03486(10) 0.041636(68) 0.048654(42) 2

7.280 0.03067(13) 0.036894(64) 0.043237(38) 2

7.373 0.02787(20) 0.033825(82) 0.039609(43) 2

7.596 0.02224(20) 0.02741(21) 0.032344(59) 2

7.825 0.01756(32) 0.022526(85) 0.026808(51) 2

Table VI: Results for decay constants of the pseudoscalar
mesons in lattice units for the HISQ/tree action along the
ml = 0.05ms LCP. We use the normalization in which f⇡ ⇠ 90
MeV. In the last column, we list the number of source points
used on each configuration to increase the statistics.

masses using this slope. The results are shown in Fig. 18
in units of r

1

. The kaon decay constant has large finite
size errors at the two smallest lattices spacings. There-
fore, we do not include the corresponding data in the
fit. We extrapolate the values of r

1

f⌘ and r
1

fK to zero
lattice spacing assuming a simple form

fir1 = (fir1)
cont + ei(a/r1)

2, i = K, ⌘. (C8)

For the kaon decay constant we get (r
1

fK)cont =
0.17186(24) and eK = 0.0230(11) with �2/dof =

� aM⇢ aMK⇤ aM�

6.195 0.7562(36) 0.8842(18) 1.0050(93)

6.354 0.6375(35) 0.7499(26) 0.8523(08)

6.423 0.6047(43) 0.6950(22) 0.7925(08)

6.460 0.5784251) 0.6709(43) 0.7644(22)

6.488 0.5647(24) 0.6478(22) 0.7363(07)

6.550 0.5324(24) 0.6118(20) 0.6929(14)

6.608 0.5072(39) 0.5757(08) 0.6523(10)

6.664 0.4732(43) 0.5501(26) 0.6180(10)

6.740 0.4286(31) 0.4996(22) 0.5732(05)

6.880 0.2828(489) 0.4359(17) 0.5000(04)

7.030 0.2937(326) 0.3750(126) 0.4333(09)

7.150 0.2866(108) 0.3387(107) 0.3901(15)

7.280 0.2535(96) 0.3026(20) 0.3467(25)

7.373 0.2363(119) 0.2774(33) 0.3165(06)

7.596 0.1923(61) 0.2272(25) 0.2593(15)

7.825 0.1543(120) 0.1884(57) 0.2140(19)

Table VII: Masses of the vector mesons in lattice units.

1.20. For the ⌘ss̄ decay constant we get (r
1

f⌘)cont =
0.19930(24) and e⌘ = 0.024(12) with �2/dof = 0.77. The
continuum extrapolation is also shown in Fig. 18, where
we compare it with the value of r

1

f⌘ quoted in Ref. [60],
and find reasonable agreement. The “PDG” value plot-
ted there is based on the PDG value of f⇡ and the value
of fK/f⇡ = 1.194(5) from the recent FLAG review [61],
which gives fK = 155.7(9)/

p
2 MeV. We find agreement

within estimated errors.

3. Vector meson masses

The masses of the three vector mesons ⇢, K⇤, and �
are listed in Table VII. All three masses are adjusted to
the LCP in a manner similar to the decay constants. For
⇢ and K⇤ the contribution of an excited state of the same
parity is significant in the available temporal range; how-
ever, fits with an excited state typically yield low confi-
dence levels. Therefore, in reporting masses on our finest
lattices we take, as a systematic error, the di↵erence in
the fitted masses with and without an excited state of
the same parity. This error is combined linearly with the
statistical error in the table.
In Fig. 19, we show the � meson mass m� in r

1

units as
a function of the lattice spacing together with the con-
tinuum extrapolation. Again, we use the simple form
(r

1

m�)cont + g�(a/r1)2 to do the continuum extrapola-
tions, and get (r

1

m�) = 1.5961(30) and g� = 0.236(18)
with �2/dof = 0.42. Our continuum extrapolation agrees
with the experimental result (shown as the band).
In summary, as one can see from Figs. 18 and 19, the

hadronic observables provide additional valuable cross-
checks for the determination of the lattice spacing. The
cuto↵ dependence of fK and m� is very similar to the
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corrected for deviations from the LCP as described in the
text. The band shows the experimental value.

cuto↵ dependence of w
0

. Therefore, the change in the
lattice spacing and the temperature scale will be similar
to the case when w

0

is used to set the lattice spacing.

Appendix D: Observables for EoS

In this appendix, we summarize the quantities we used
to evaluate the trace anomaly. They include the expec-
tation values of local observables such as the gauge ac-
tion density sG and the light and strange quark conden-
sates. At nonzero temperature, we also report results for
the disconnected light and strange chiral susceptibilities
(�disc

l and �disc
s ), i.e., the fluctuations of the light and

strange quark condensates, as well as the bare Polyakov
loop Lbare. We use the same definitions of these quan-
tities as in Ref. [5]. In particular, the quark conden-
sates are normalized per single flavor, the disconnected
chiral susceptibility for light quarks is normalized for

two flavors, and the disconnected chiral susceptibility for
strange quarks is normalized for a single flavor.
The gauge action density and the quark condensates

for zero temperature are given in Table VIII. The observ-
ables at nonzero temperature are summarized in Tables
IX, X, XI, and XII for N⌧ = 6, 8, 10, and 12 lattices.
For the calculation of the trace anomaly, one also needs

the lattice spacing in units of r
1

, the nonperturbative
beta function R� , the strange quark mass as function of
� along the LCP and the mass renormalization function
Rm calculated along the LCP. The parametrization of
r
1

/a and R� and the calculation of their errors have been
discussed in Appendix B. In Table VIII, we give these
quantities with their errors. The value of ms along the
LCP has been discussed in Appendix C, where an explicit
parametrization of m̃s = r

1

mLCP
s has been given. The

mass renormalization function Rm can be written as

Rm = �R�1

� (1� R̃mR�), R̃m =
1

m̃s

dm̃s

d�
. (D1)

The values of m̃s and R̃mR� are also given in Table VIII.
As one can see from Figs. 16 and 17, the deviations of the
input strange quark masses from the LCP for � � 7.03
are at most 7% and are below 1% for � < 7.03. To include
the errors arising from the deviations from the LCP, we
assign a 1% error to ms for � < 7.03 and 10% errors
to ms for � � 7.03 in Eq. (9). All the errors discussed
above are added in quadratures to get the the total error
estimate of the trace anomaly presented in Sec. III. Our
estimate of the systematic errors on the trace anomaly
due to the deviations from LCP includes only the di↵er-
ence between the input ms and the value of ms along
the LCP. Since ml/ms is kept constant, there is no addi-
tional uncertainty due to ml. The value of ms, however,
will a↵ect the expectation value of the gluon action and
the quark condensates shown in Eqs.(8,9). We did not
estimate these e↵ects, but based on the past experience
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� hsGi h ̄ il h ̄ is r1/a R� m̃s R�Rm

5.900 2.632783(101) 0.049104(40) 0.105812(26) 1.264( 5) 1.048(17) 0.16563(166) -1.6999(114)

5.950 2.597143(81) 0.043881(54) 0.098036(32) 1.325( 5) 1.043(17) 0.16060(161) -1.5925(97)

6.000 2.561602(72) 0.038908(37) 0.090108(26) 1.390( 4) 1.038(16) 0.15646(156) -1.4972(77)

6.025 2.544156(82) 0.036579(45) 0.086515(29) 1.424( 4) 1.036(15) 0.15468(155) -1.4545(66)

6.050 2.526767(19) 0.034355(45) 0.083052(30) 1.459( 4) 1.034(15) 0.15306(153) -1.4149(60)

6.075 2.509536(128) 0.032248(36) 0.079962(31) 1.494( 4) 1.032(14) 0.15160(152) -1.3783(51)

6.100 2.492425(78) 0.030236(36) 0.076478(23) 1.531( 4) 1.030(14) 0.15028(150) -1.3448(47)

6.125 2.475464(21) 0.028340(18) 0.073315(10) 1.568( 4) 1.028(13) 0.14908(149) -1.3141(40)

6.150 2.458696(42) 0.026433(38) 0.070257(16) 1.607( 4) 1.027(13) 0.14799(148) -1.2866(36)

6.175 2.442094(39) 0.024793(20) 0.067305(13) 1.646( 4) 1.025(12) 0.14701(147) -1.2614(31)

6.195 2.429035(30) 0.023470(19) 0.064892(12) 1.679( 4) 1.025(12) 0.14629(146) -1.2435(29)

6.245 2.396804(11) 0.020449(14) 0.059664(10) 1.762( 4) 1.023(10) 0.14470(145) -1.2049(20)

6.285 2.3716826(153) 0.0183176(150) 0.0557043(69) 1.833( 4) 1.022( 9) 0.14362(144) -1.1803(16)

6.341 2.3374387(197) 0.0156426(187) 0.0506613(102) 1.936( 4) 1.021( 8) 0.14231(142) -1.1538(12)

6.354 2.3297339(226) 0.0151142(157) 0.0495513(82) 1.961( 4) 1.021( 8) 0.14204(142) -1.1489(12)

6.390 2.3084526(343) 0.0135987(151) 0.0464432(90) 2.031( 4) 1.021( 8) 0.14133(141) -1.1373(11)

6.423 2.2894362(269) 0.0124345(110) 0.0440691(80) 2.098( 5) 1.022( 8) 0.14072(141) -1.1292(10)

6.460 2.2685484(184) 0.0111926(157) 0.0413543(72) 2.175( 5) 1.022( 8) 0.14008(140) -1.1223(10)

6.488 2.2530949(69) 0.0103368(80) 0.0395263(45) 2.235( 5) 1.023( 9) 0.13962(140) -1.1186(10)

6.515 2.2384913(119) 0.0096409(162) 0.0379912(95) 2.295( 5) 1.024( 9) 0.13919(139) -1.1160(10)

6.550 2.2198533(261) 0.0087186(96) 0.0359905(69) 2.375( 5) 1.026(10) 0.13864(139) -1.1141(11)

6.575 2.2068224(107) 0.0081675(80) 0.0345257(68) 2.434( 5) 1.027(10) 0.13826(138) -1.1134(11)

6.608 2.1899477(85) 0.0074639(60) 0.0327412(57) 2.513( 5) 1.029(10) 0.13776(138) -1.1134(11)

6.664 2.1620782(110) 0.0064352(101) 0.0302931(50) 2.654( 5) 1.033(10) 0.13691(137) -1.1150(11)

6.740 2.1257817(133) 0.0053945(96) 0.0272312(48) 2.856( 5) 1.039(10) 0.13574(136) -1.1196(12)

6.800 2.0982834(130) 0.0045273(53) 0.0250900(34) 3.026( 6) 1.045(10) 0.13479(135) -1.1244(12)

6.880 2.0630924(76) 0.0038178(57) 0.0224907(35) 3.266( 7) 1.053(10) 0.13348(133) -1.1313(12)

6.950 2.0336080(100) 0.0030671(68) 0.0206297(36) 3.491( 7) 1.061(10) 0.13230(132) -1.1373(13)

7.030 2.0012582(67) 0.0027057(50) 0.0186364(23) 3.764( 8) 1.071(10) 0.13091(1309) -1.1435(13)

7.150 1.9552310(112) 0.0021015(39) 0.0162827(22) 4.209(11) 1.085(11) 0.12878(1288) -1.1507(15)

7.280 1.9083452(117) 0.0015991(68) 0.0140717(28) 4.743(13) 1.101(11) 0.12646(1265) -1.1552(16)

7.373 1.8765238(46) 0.0012932(102) 0.0122227(24) 5.160(15) 1.112(12) 0.12481(1248) -1.1562(17)

7.596 1.8053831(35) 0.0008701(71) 0.0095488(14) 6.297(24) 1.135(21) 0.12103(1210) -1.1524(28)

7.825 1.7388070(42) 0.0005625(54) 0.0075428(23) 7.696(51) 1.154(27) 0.11751(1175) -1.1420(33)

Table VIII: The gauge action density, light and strange quark condensates at zero temperatures. Also shown are the values of
r1/a, m̃s, R� and R�Rm used in the calculation of the trace anomaly along the LCP.
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� T [MeV] hsGi h ̄ il h ̄ is �disc
l �disc

s Lbare

5.900 133.8 2.632253(64) 0.044948(25) 0.105106(15) 0.577(10) 0.0644(17) 0.002599(20)

5.950 140.3 2.596445(58) 0.038962(28) 0.097108(17) 0.655(12) 0.0681(19) 0.003157(22)

6.000 147.2 2.560827(68) 0.032932(30) 0.088920(16) 0.741(11) 0.0704(14) 0.004077(20)

6.025 150.8 2.543240(18) 0.029995(27) 0.085152(10) 0.810(16) 0.0711(15) 0.004600(32)

6.050 154.5 2.525666(19) 0.027029(32) 0.081458(18) 0.946(26) 0.0754(27) 0.005294(33)

6.075 158.2 2.508305(33) 0.024144(50) 0.078122(26) 1.061(19) 0.0777(21) 0.006013(28)

6.100 162.1 2.490962(34) 0.020983(31) 0.074290(16) 1.148(23) 0.0798(18) 0.007027(18)

6.125 166.0 2.473804(31) 0.017975(47) 0.070757(17) 1.223(24) 0.0816(29) 0.008156(31)

6.150 170.1 2.456840(33) 0.014837(53) 0.067264(24) 1.313(28) 0.0889(19) 0.009463(53)

6.175 174.3 2.439980(29) 0.012008(39) 0.063819(18) 1.148(26) 0.0906(31) 0.010942(55)

6.195 177.8 2.426644(30) 0.009958(46) 0.061004(18) 1.009(22) 0.0932(15) 0.012192(42)

6.245 186.5 2.394214(29) 0.006302(37) 0.054910(31) 0.440(12) 0.0866(23) 0.015619(71)

6.285 194.1 2.368816(49) 0.004572(23) 0.050296(23) 0.1963(71) 0.0753(28) 0.018535(49)

6.341 205.0 2.334602(54) 0.003229(14) 0.044690(24) 0.0686(34) 0.0724(20) 0.022822(75)

6.354 207.6 2.326948(71) 0.0030128(68) 0.043460(18) 0.05033(157) 0.06293(215) 0.023805(68)

6.423 222.1 2.286667(62) 0.0022268(37) 0.037597(16) 0.01467(44) 0.04245(122) 0.029564(72)

6.488 236.6 2.250583(43) 0.0018235(37) 0.033135(14) 0.00656(46) 0.02796(45) 0.034892(104)

6.515 243.0 2.236043(44) 0.0017067(23) 0.031671(12) 0.00394(25) 0.02268(48) 0.037358(81)

6.550 251.4 2.217540(36) 0.0015783(23) 0.029853(10) 0.00289(28) 0.01663(45) 0.040428(102)

6.575 257.7 2.204590(57) 0.0014903(19) 0.028517(10) 0.00186(20) 0.01368(46) 0.042698(84)

6.608 266.1 2.187842(66) 0.0013966(12) 0.026962( 8) 0.00166(13) 0.01048(32) 0.045373(81)

6.664 281.0 2.160154(56) 0.00127253(92) 0.0249128(67) 0.000646(55) 0.006665(202) 0.050566(88)

6.800 320.4 2.096708(55) 0.00104636(41) 0.0207485(33) 0.000170(48) 0.002140(77) 0.062640(66)

6.950 369.6 2.032442(34) 0.00086791(28) 0.0172826(20) 0.000055(14) 0.000795(36) 0.076417(96)

7.150 445.6 1.954433(30) 0.000696540(50) 0.01390563(83) 0.00000214(44) 0.0002043(52) 0.094300(69)

7.280 502.1 1.907706(57) 0.000609280(48) 0.01216886(50) 0.00000388(166) 0.0001201(108) 0.105861(91)

7.373 546.3 1.875942(38) 0.000531641(23) 0.01062292(55) 0.000001297(43) 0.0002442(32) 0.113932(98)

7.596 666.7 1.805019(28) 0.000422615(31) 0.00844724(40) 0.000001080(397) 0.0001474(113) 0.132910(111)

7.825 814.8 1.738571(16) 0.000338793(10) 0.00677357(19) 0.0000003877(22) 0.00007679(64) 0.151621(112)

Table IX: Expectation value of local observables calculated on N⌧ = 6 lattices
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� T [MeV] hsGi h ̄ il h ̄ is �disc
l �disc

s Lbare

6.050 115.8 2.5266237(348) 0.0327762(186) 0.0828810(115) 0.4139(69) 0.05669(150) 0.0004353(134)

6.125 124.5 2.4753158(262) 0.0264181(110) 0.0730705(82) 0.4706(75) 0.06081(109) 0.0006204(47)

6.175 130.7 2.4419268(287) 0.0225733(227) 0.0669802(122) 0.4779(81) 0.05382(134) 0.0008371(116)

6.195 133.3 2.4288377(376) 0.0211403(154) 0.0645320(91) 0.4973(132) 0.05412(245) 0.0009414(166)

6.245 139.9 2.3965418(294) 0.0177511(150) 0.0591829(61) 0.5346(109) 0.05172(93) 0.0012420(117)

6.285 145.5 2.3713746(283) 0.0151984(242) 0.0550896(84) 0.5607(334) 0.04938(161) 0.0016083(177)

6.341 153.7 2.3370256(418) 0.0118052(185) 0.0498389(77) 0.7507(139) 0.05228(141) 0.0022252(131)

6.354 155.7 2.3292352(137) 0.0109211(513) 0.0485851(197) 0.8123(357) 0.05624(304) 0.0024708(325)

6.390 161.3 2.3079034(111) 0.0088051(453) 0.0452635(142) 0.8915(238) 0.05593(184) 0.0031329(387)

6.423 166.6 2.2887805(179) 0.0069624(573) 0.0426307(216) 0.9083(238) 0.05822(342) 0.0038408(355)

6.460 172.7 2.2678076(214) 0.0050971(363) 0.0395899(152) 0.6520(254) 0.05707(351) 0.0048401(370)

6.488 177.5 2.2523061(146) 0.0040973(324) 0.0375676(211) 0.4791(204) 0.05586(308) 0.0055937(523)

6.515 182.2 2.2376344(146) 0.0033605(111) 0.0358104(81) 0.3208(65) 0.05421(204) 0.0064548(245)

6.550 188.6 2.2189982(111) 0.0026714(70) 0.0335964(50) 0.1676(32) 0.04600(150) 0.0076062(174)

6.575 193.3 2.2059639(144) 0.0023153(61) 0.0319944(50) 0.1061(20) 0.04065(91) 0.0084632(181)

6.608 199.5 2.1890447(95) 0.0019665(55) 0.0300405(69) 0.0554(18) 0.03770(106) 0.0096959(240)

6.664 210.7 2.1612301(160) 0.00161467(242) 0.0274505(65) 0.02910(72) 0.028704(850) 0.0118668(196)

6.740 226.8 2.1249421(157) 0.00132194(152) 0.0243573(47) 0.01123(37) 0.017709(487) 0.0150425(309)

6.800 240.3 2.0975154(118) 0.00117166(80) 0.0223027(32) 0.00606(20) 0.010758(192) 0.0176361(287)

6.880 259.3 2.0624169(93) 0.00102161(56) 0.0199079(30) 0.00282(16) 0.005774(105) 0.0213349(344)

6.950 277.2 2.0329709(115) 0.00092680(48) 0.0182584(25) 0.00138(13) 0.003370(64) 0.0246964(418)

7.030 298.9 2.0006938(123) 0.00083316(37) 0.0165135(12) 0.00080(21) 0.001763(20) 0.0286964(278)

7.150 334.2 1.9547446(127) 0.00072858(127) 0.014507068(795) 0.0001447(228) 0.0007811(177) 0.0349571(493)

7.280 376.6 1.9079588(118) 0.00063333(87) 0.012635689(523) 0.0000317(121) 0.0003433(117) 0.0419502(385)

7.373 409.7 1.8762085(84) 0.00055109(22) 0.011005082(305) 0.0000075(24) 0.0004985(47) 0.0470148(330)

7.596 500.0 1.8051472(106) 0.00043608(17) 0.008714430(192) 0.0000040(28) 0.0002289(36) 0.0595132(289)

7.825 611.1 1.73864086(834) 0.0003485897(29) 0.006968632(67) 0.000000600( 3) 0.00011855(51) 0.0725663(201)

Table X: Expectation value of local observables calculated on N⌧ = 8 lattices

� T [MeV] hsGi h ̄ il h ̄ is �disc
l �disc

s Lbare

6.488 142.0 2.2529939(94) 0.008717(66) 0.0392107(30) 0.4696(80) 0.03671(59) 0.0006332(54)

6.515 145.8 2.2383351(92) 0.007845(53) 0.0376092(21) 0.4983(48) 0.03601(67) 0.0007530(46)

6.575 154.6 2.2066486(87) 0.005916(112) 0.0339874(45) 0.6199(111) 0.03566(87) 0.0011236(72)

6.608 159.6 2.1897092(97) 0.004863(141) 0.0320595(57) 0.6914(140) 0.03790(54) 0.0014074(111)

6.664 168.6 2.1618075(67) 0.003366(119) 0.0293881(48) 0.5971(104) 0.03805(76) 0.0020061(99)

6.740 181.4 2.1254552(49) 0.002058(44) 0.0260341(30) 0.2350(27) 0.03178(63) 0.0030709(50)

6.800 192.2 2.0979463(46) 0.001551(21) 0.0237258(22) 0.10175(85) 0.02664(27) 0.0040471(52)

6.880 207.5 2.0627661(47) 0.001196(11) 0.0210031(13) 0.03805(50) 0.01794(15) 0.0055452(50)

6.950 221.8 2.0332765(52) 0.0010256(87) 0.0191246(19) 0.01785(44) 0.01182(21) 0.0069963(116)

7.030 239.1 2.0009567(52) 0.0008889(70) 0.0171719(16) 0.00732(49) 0.00655(12) 0.0088725(130)

7.150 267.4 1.9549570(41) 0.0007594(33) 0.01496641(85) 0.002826(227) 0.002693(65) 0.0118853(116)

7.280 301.3 1.9081112(43) 0.0006518(22) 0.01296143(67) 0.000578(120) 0.001005(28) 0.0155783(205)

7.373 327.8 1.8763272(51) 0.0005648(11) 0.01125795(32) 0.000239(83) 0.000522(29) 0.0183751(154)

7.596 400.0 1.8052323(39) 0.00044450(86) 0.008876950(228) 0.0000210(201) 0.0001413(88) 0.0256495(265)

7.825 488.9 1.7387004(82) 0.00035425( 5) 0.007080600(105) 0.00000040(14) 0.0000461(10) 0.0337466(261)

Table XI: Expectation value of local observables calculated on N⌧ = 10 lattices
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� T [MeV] hsGi h ̄ il h ̄ is �disc
l �disc

s Lbare

6.740 151.2 2.1257086(54) 0.004079(97) 0.0269239(25) 0.4498(119) 0.02317(53) 0.0004772(73)

6.800 160.2 2.0981866(76) 0.003016(120) 0.0246617(30) 0.5714(211) 0.02569(175) 0.0007167(44)

6.880 172.9 2.0629734(44) 0.001882(75) 0.0218834(45) 0.3838(75) 0.02479(102) 0.0011690(73)

6.950 184.8 2.0334633(59) 0.001339(52) 0.0198904(40) 0.1644(30) 0.02098(123) 0.0016813(86)

7.030 199.2 2.0011122(72) 0.001025(22) 0.0177901(23) 0.0617(15) 0.01489(61) 0.0024077(75)

7.150 222.8 1.9550761(46) 0.000808(10) 0.0153880(17) 0.0183(10) 0.00823(55) 0.0037030(71)

7.280 251.1 1.9082143(37) 0.000675(13) 0.0132415(21) 0.0061(12) 0.00312(13) 0.0054060(154)

7.373 273.1 1.8764082(49) 0.0005792(88) 0.01146391(89) 0.0042(12) 0.002445(51) 0.0068171(125)

7.596 333.3 1.8052889(42) 0.00045065(76) 0.00899511(28) 0.000093(58) 0.000682(11) 0.0106861(146)

7.825 407.4 1.7387435(49) 0.000358140(90) 0.00715650(16) 0.000000601(50) 0.0001120(91) 0.0153196(362)

Table XII: Expectation value of local observables calculated on N⌧ = 12 lattices




